Digital computer

- Two voltage levels of interest
 - High level
 - Logical one (signal *high/true/asserted*)
 - Low level
 - Logical zero (signal *low/false/deasserted*)
 - Logical values are complementary and inverse of each other
 - Unlike the voltage levels representing logical ones and zeros
Logic blocks

- **Combinational**
 - No memory \rightarrow no internal state
 - Output depends only on current input
 - Represents logical functions

- **Sequential**
 - Has memory \rightarrow has internal state
 - Output depends on input and internal state
 - Captures sequence of steps
Logic functions and truth tables

- Logic function (also Boolean function)
 - Output value is a function of input values
 - \(f: \mathbb{B}^k \rightarrow \mathbb{B} \), where \(\mathbb{B} = \{0, 1\} \) and \(k \in \mathbb{N} \) is arity

- Truth table
 - Function defined by enumerating the output for each combination of inputs (a table \(2^k \) rows for \(k \) inputs)

<table>
<thead>
<tr>
<th>Inputs</th>
<th>Output f(a, b)</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>b</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>
Boolean algebra

Logic functions expressed as equations

- Variables hold values from $\mathbb{B} = \{0, 1\}$
- Basic operators – primitive logic functions
 - **Logical inversion** (NOT): \overline{x}, $\neg x$, $!x$
 - **Logical product, conjunction** (AND): $x \cdot y$, $x \land y$, $x \&\& y$
 - **Logical sum, disjunction** (OR): $x + y$, $x \lor y$, $x \mid\mid y$
- Additional operators (16 for 2 variables)
 - NAND, NOR, XOR etc.
Logic operators

<table>
<thead>
<tr>
<th>Inputs</th>
<th>Basic operators</th>
<th>Universal operators</th>
</tr>
</thead>
<tbody>
<tr>
<td>a b</td>
<td>NOT a</td>
<td>a AND b</td>
</tr>
<tr>
<td></td>
<td>\neg</td>
<td>\wedge</td>
</tr>
<tr>
<td>0 0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0 1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1 0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1 1</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Inputs</th>
<th>Other operators</th>
</tr>
</thead>
<tbody>
<tr>
<td>a b</td>
<td>a XOR b</td>
</tr>
<tr>
<td></td>
<td>\oplus</td>
</tr>
<tr>
<td>0 0</td>
<td>0</td>
</tr>
<tr>
<td>0 1</td>
<td>1</td>
</tr>
<tr>
<td>1 0</td>
<td>1</td>
</tr>
<tr>
<td>1 1</td>
<td>0</td>
</tr>
</tbody>
</table>
Boolean algebra laws

- **Idempotency**: $a + a = a$, $a \cdot a = a$
- **Computativity**: $a + b = b + a$, $a \cdot b = b \cdot a$
- **Associativity**: $a + (b + c) = (a + b) + c$, $a \cdot (b \cdot c) = (a \cdot b) \cdot c$
- **Absorption**: $a \cdot (a + b) = a$, $a + (a \cdot b) = a$
- **Distributivity**: $a \cdot (b + c) = (a \cdot b) + (a \cdot c)$, $a + (b \cdot c) = (a + b) \cdot (a + c)$
- **Neutrality of 0 and 1**: $a + 0 = a$, $a \cdot 1 = a$
- **Aggressivity of 0 and 1**: $a + 1 = 1$, $a \cdot 0 = 0$
- **Complementarity**: $a + \neg a = 1$, $a \cdot \neg a = 0$
- **Absorption of negation**: $a \cdot (\neg a + b) = a \cdot b$, $a + (\neg a \cdot b) = a + b$
- **De Morgan’s laws**: $\neg(a + b) = \neg a \cdot \neg b$, $\neg(a \cdot b) = \neg a + \neg b$
- **Double negation**: $\neg(\neg a) = a$
Intermezzo: CPU logical operations (1)

- Logic functions extended to operate on (finite) sequences of bits
 - **Word** = finite sequence of bits
 - **Word length** = number of bits in the sequence
 - Output of a logic operation \(a \) is a function of input values
 - \(f: (\mathcal{B}^n)^k \rightarrow \mathcal{B}^n \), where \(\mathcal{B} = \{0, 1\} \), \(k \in \mathbb{N} \) is arity and \(n \in \mathbb{N} \) is word length
Intermezzo: CPU logical operations (2)

- (Bitwise) logical product/sum/inversion
 - Operators &, |, ~ etc. in C-like languages
 - Primitive logic function applied to individual bits of the input words, result stored to individual bits of the output word
 - Allow isolating (AND), zeroing (AND, NOR), setting (OR), inverting (XOR) selected bits, or inverting all bits (NOT), of the input word
Intermezzo: CPU logical operations (3)

- Logical shifts (left and right)
 - Operators \(<<<\) and \(>>\) in C-like languages
 - Shifts bits in a word \(i\) positions to the left or right
 - "Vacated" bits are replaced with 0
 - For binary natural numbers
 - Shift by \(i\) bits to the left → multiplying by \(2^i\)
 - Shift by \(i\) bits to the right → dividing by \(2^i\)
Logic gates (1)

- Physical implementation basic logic functions
 - Basic gates: NOT, OR, AND

- NOT gate: $\neg a$
- OR gate: $a + b$
- AND gate: $a \cdot b$
Physical implementation of logic operators

- Inverting gates: NAND, NOR
- Less common gates: XOR

\[\neg(a \cdot b) \]

\[\neg(a + b) \]

\[a \oplus b \]
Combinational logic circuits

- **Implementation of more complex logic functions**
 - Combines multiple logic operators
 - Logic signals correspond to variables
 - Logic gates correspond to primitive operators
 - Most commonly NAND or NOR gates
 - Sufficient for expressing any logic function

- **Logic block**
 - Abstracts away from internal structure of a circuit
 - Provides functional building blocks
Logic blocks: binary (half) adder

- **Adds two 1-bit numbers**
 - The simplest case
 - **Input:**
 - operand \(a\)
 - operand \(b\)
 - **Output:**
 - sum \(s\)
 - carry \(c\)
 - **Function:**
 - \(s = a \cdot \neg b + \neg a \cdot b = a \text{ XOR } b\)
 - \(c = a \cdot b = a \text{ AND } b\)

<table>
<thead>
<tr>
<th>Inputs</th>
<th>Outputs</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a)</td>
<td>(b)</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>
Logic blocks: binary (half) adder (2)
Adding n-bit numbers

- Merge $n \frac{1}{2}$-adders for individual bits?

$\frac{1}{2}\Sigma$-adder cannot propagate carry from previous additions (not enough inputs)
Logic blocks: binary adder (4)

- **Full adder**
 - Adds two 1-bit numbers taking into account carry from previous addition

- **Input:**
 - operand \(a \)
 - operand \(b \)
 - carry \(c_0 \)

- **Output:**
 - sum \(s \)
 - carry \(c \)
Full adder

- Adds two 1-bit numbers taking into account carry from previous addition

Inputs: operand \(a\), operand \(b\), carry \(c_0\)

Outputs: sum \(s\), carry \(c\)

- \(s = \neg c_0 \cdot (a \cdot \neg b + \neg a \cdot b) + c_0 \cdot (a \cdot b + \neg a \cdot \neg b)\)
 \[s = \ldots \]
 \[s = c_0 \text{ XOR} (a \text{ XOR} b) \]

- \(c = a \cdot b + c_0 \cdot (a \cdot \neg b + \neg a \cdot b)\)
 \[c = (a \text{ AND} b) \text{ OR} (c_0 \text{ AND} (a \text{ XOR} b)) \]

<table>
<thead>
<tr>
<th>(c_0)</th>
<th>(a)</th>
<th>(b)</th>
<th>(c)</th>
<th>(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>
Logic blocks: binary adder (6)
Logic blocks: binary adder (7)

Abstraction:
\[a + b + c_0 = (a + b) + c_0 \]
Logic blocks: binary adder (8)

n-bit Σ

Function block:

\[
\begin{array}{c}
a \\
\downarrow \\
c
\end{array} \quad \text{add} \quad \begin{array}{c}
b \\
\downarrow \\
s
\end{array}
\]
Logic block for subtraction

- Taking advantage of 2’s complement
 - Basic building block: adder
 - Use XOR gate as a controlled inverter
 - **Example:** 2-bit ALU supporting addition and subtraction
 - **Data input:** operand bits a_1a_0, operand bits b_1b_0
 - **Control input:** signal SUB to determine operation
 - $\text{SUB} = 0 \rightarrow$ addition
 - $\text{SUB} = 1 \rightarrow$ subtraction
 - **Output:** sum/difference bits s_1s_0, carry c
2-bit ALU for adding/subtracting

$\text{SUB} = 1$ inverts bits of the second operand and adds 1 (negates number)
Sequential logic

- Combinational logic + memory elements
 - Memory elements keep internal state
 - Inputs and the contents of memory (internal state) determines outputs and next internal state
 - Synchronous vs. asynchronous sequential circuits
 - Determines how and when state changes
 - Need to ensure stable inputs (inputs don’t change)
Synchronous sequential circuits

- **Clock signal to synchronize state changes**
 - Change state during one clock cycle
 - Inputs of combinational logic does not change while it is being read
 - Writing of values from outputs to memory elements happens with rising/falling edge of the clock signal

![Diagram of clock signal period with rising and falling edges](image-url)
Memory elements

- **Pair of inverters in a feedback loop**
 - Asynchronous circuit with two stable states
 - Allows “storing” 1 bit of information
 - Need to be able to control the state...
 - We need a gate that can pass the signal unchanged, but allows forcing an output value when required
 - Basic building block for memory elements

![Diagram of a pair of inverters in a feedback loop](image-url)
Set-Reset (R-S) latch, NOR-based

Inputs	Outputs
\(r \) | \(q_n \) | \(\bar{q}_n \)
\(s \) | 0 | 1 | 0

\[\begin{array}{c|c|c|c|c}
 r & s & q_n & \bar{q}_n \\
\hline
 0 & 0 & q & \bar{q} \\
 0 & 1 & 1 & 0 \\
 1 & 0 & 0 & 1 \\
 1 & 1 & ? & ? \\
\end{array} \]
Set-Reset (R-S) latch, NAND-based

\[\begin{array}{c|c|c|c|c} \hline \text{Inputs} & \bar{r} & \bar{s} & q_n & \bar{q}_n \\ \hline 0 & 0 & ? & ? \\ 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 \\ 1 & 1 & q_{n-1} & \bar{q}_{n-1} \\ \hline \end{array} \]
Other flip-flops

- **Derived from R-S**
 - *Clocked R-S latch*
 - Synchronous R-S latch variant
 - Reacts to R or S signals while the clock signal is high
 - *R-S master/slave (R-S flip-flop)*
 - Two clocked R-S latches (in series) with complementary clock signal
 - Reacts to R or S signals only on rising/falling edge of the clock signal
Other flip-flops (2)

- **Derived from R-S**
 - *J-K master/slave (J-K flip-flop)*
 - Extends R-S (J = S, K = R), inverts state when J = K = 1
 - *Clocked D latch, D flip-flop*
 - Value determines by single input
 - *T flip-flop*
 - Allows dividing clock signal frequency
Data register made of flip-flops

![Diagram of a data register made of flip-flops]

- **CLOCK**: Input for triggering the flip-flops.
- **DATA**: Input for data to be stored.
- **D Q**: Flip-flops to store the data.
- **q_{n-1}, q_1, q_0**: Outputs of the flip-flops, representing the data stored.
- **d_{n-1}, d_1, d_0**: Inputs to the flip-flops, representing the data to be stored.
Shift register made of flip-flops

![Shift register diagram](image-url)
32-bit sequential multiplier

A

32-bit ∑

Shift Arith. Right

Write

64-bit A×B

Control

Test

32-bit sequential multiplier
32-bit sequential divider

A mod B 64-bit A div B

32-bit ALU

B

Control
Test

Shift Right
Shift Left
Write