
Charles University in Prague

Faculty of Mathematics and Physics

MASTER THESIS

Tomáš Poch

Distributed Behavior Protocol Checker

Department of Software Engineering

Supervisor: RNDr. Jan Kofroň

Study Program: Computer Science, Software Systems

I would like to thank to my advisor for his valuable comments and sug-
gestions. His experience with checking behavior protocols helped me a lot. I
also want to thank to Ondřej Šerý for important feedback and discussions.
Finally I want to thank to my family for their support.

Prohlašuji, že jsem svou diplomovou práci napsal samostatně a výhradně
s použit́ım citovaných pramen̊u. Souhlaśım se zap̊ujčováńım práce.

I hereby declare that I have elaborated this master thesis on my own and
listed all used references. I agree with lending of this thesis.

In Prague on October 20, 2006 Tomáš Poch

i

ii

Contents

1 Introduction 1

1.1 Components . 2
1.2 Model checking . 4
1.3 Behavior protocols . 4
1.4 Goals . 5
1.5 Structure of this work . 5

2 Behavior Protocols 6

2.1 Model description . 6
2.1.1 Language . 6

2.2 Finite state machines . 9
2.3 Composition of behavior protocols 9
2.4 Model properties . 10

2.4.1 Bad activity . 10
2.4.2 No activity . 12
2.4.3 Infinite activity . 12

2.5 Checking the model part by part 13

3 Checking the protocols 15

3.1 Checking of an application . 15
3.1.1 Primitive component analysis 15
3.1.2 Horizontal compliance 16
3.1.3 Vertical compliance . 16

3.2 Preprocessing . 17
3.2.1 Grammatically correct architecture description 17
3.2.2 Semantically correct architecture description 18
3.2.3 Canonical architecture description 18

3.3 Consent FSM . 21
3.3.1 Previous versions of the checker 22
3.3.2 State representation 23

3.4 State space division . 27

iii

3.4.1 Traversal strategy . 29
3.4.2 Dividing the cuboid . 30
3.4.3 Dividing the state space in the local checker 34

3.5 Reporting errors . 35
3.6 Infinite activity detection . 35

3.6.1 Reachability of final state 36
3.6.2 Managing cycles . 36

3.7 Heuristics for state space division 37

4 Implementation 40

4.1 Language, platform, libraries 40
4.2 Distributed checker processes 40

4.2.1 The Server . 40
4.2.2 Clients . 41
4.2.3 Console . 42
4.2.4 Termination detection 42
4.2.5 State space division . 43

4.3 Architecture description . 43
4.3.1 Parse trees . 43
4.3.2 Finite state machines 43
4.3.3 FlyFSM . 44

5 Evaluation 47

5.1 The architectures used for evaluation 47
5.1.1 Artificial . 47
5.1.2 Real-world . 47

5.2 The local version vs. PTA . 48
5.3 Scaling . 49

6 Related work 53

7 Conclusion 55

A FSM representation of behavior protocols 56

B Input file grammar 58

C Edge and node density 60

iv

v

Název práce: Distributed Behavior Protocol Checker
Autor: Tomáš Poch
Katedra: Katedra softwarového inženýrstv́ı
Vedoućı diplomové práce: RNDr. Jan Kofroň
e-mail vedoućıho: kofron@nenya.ms.mff.cuni.cz
Abstrakt:

Nár̊ust dostupné výpočetńı śıly umožnil v posledńıch letech praktické využit́ı
formálńı verifikace softwarových systém̊u. Nejpalčivěǰśım problémem, který
zabraňuje širš́ımu využit́ı však z̊ustává velikost stavových prostor̊u. Proto jsou
tyto techniky zat́ım omezeny na relativně malé úlohy. Jednou z možnost́ı
jak podstatně sńı̌zit počet stav̊u je modelováńı softwaru pomoćı behavior pro-
tokol̊u. [1] Jedná se o regulárńı výrazy, které popisuj́ı chováńı softwarových
komponent. Konkrétńı implementace komponenty je tedy ověřena jen jednou
oproti protokolu a při verifikaci celé aplikace je jǐz skryta. Ta se pak re-
dukuje na ověřeńı toho, že protokoly komponent ze kterých se aplikace skládá
k sobě pasuj́ı. Nicméně velikost i takto zjednodušeného stavového prostoru
bývá typicky exponenciálńı vzhledem k délce popisu modelu.

Distribuovaný pr̊uchod stavovám prostorem společně s jeho generováńım
’za letu’ [2] by měl ještě v́ıce rozš́ıřit rozsah problém̊u zvládnutelných touto
technikou.

Kĺıčová slova: model checking, behavior protocol, komponenty

Title: Distributed Behavior Protocol Checker
Author: Tomáš Poch
Department: Department of Software Engineering
Supervisor: RNDr. Jan Kofroň
Supervisor’s e-mail address: kofron@nenya.ms.mff.cuni.cz
Abstract:

Growth of the computability power in the last years enabled practical use
of model checking of software systems. However the state space explosion is
still a burning problem that limits usage of this technique to the relatively
small tasks. One of the approaches that significantly decrease state space of
the task is Behavior Protocol [1]. Behavior protocol is regular language that
describes behavior of software component so that component implementation
details are hidden during checking of whole application - what is reduced to
the checking whether behavior protocols of used components are compliant.
However even checking of behavior protocols compliance faces the exponential
growth of number of states.

Distributed state space traversing together with ’on the fly’ state space
generation [2] can be used to improve both time and space requirements.

Keywords: model checking, behavior protocol, components

vi

vii

Chapter 1

Introduction

As the software systems became an essential part of many kinds of human ac-
tivities in the last few decades the requirements on these systems has changed.
The amount of developed software is increasing, the solved tasks are more
complex and user requirements changes more often. Supported by perma-
nent decreasing of computational power costs the hardware requirements are
not on the first place any more. The software producers are more concerned
about development costs as the people who develop the software are more
valuable than hardware used to run their applications.

One of the ways to decrease the work needed to develop and maintain
an application is a component paradigm. The application is built from well-
defined pieces of software called components. This increases maintainability
of software and enables re-usability of components in other applications.

The next factor that significantly increases the cost of software develop-
ment are errors. The errors are expensive especially when they are found
in later stages of the development process. Model-checking techniques al-
low developers to check whether their product satisfies particular properties.
The errors that are covered by the properties can be found relatively soon.
This approach is stronger than testing. It provides the proof that the tested
system is correct.

The model-checking is often based on traversing of state space. As the
state spaces of software systems are typically exponential, the model-checking
becomes extremely resource demanding task. It significantly decreases range
of applications that can be checked with reasonable resources.

1

1.1 Components

Software components are the next step in the methodology of programming.
Coming after object oriented programing, this paradigm provides stronger
encapsulation.

The components are meant as building blocks of applications. Once a
component is written it can be reused in many applications. Moreover, com-
ponents can be nested which means that more complex components can be
built by connecting simpler ones. A component defines not only the methods
it provides to other components, but it also holds information about services
required to accomplish its tasks. Group of methods that are associated with
some functionality is called interface. Each interface is provided or required
by the component.

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

component instance name

in
:IC

on
so

le
In

pu
t

ou
t:I

C
on

so
le

O
ut

pu
t

re
sp

on
se

:IR
es

po
ns

e
qu

er
y:

IQ
ue

ry

logic:Logic

parser:IParser

prettyprinter:IPrettyPrinter

component type

interface name interface type

provided interface

required interface

Figure 1.1: Component in detail

The Fig. 1.1 depicts an example of component that provides in interface
of type IConsoleInput. This interface contains inputLine method that can
be invoked by IConsoleInput implementation. IConsoleInput implemen-
tation bound to this interface uses it to pass a line entered by user on console
to the component for processing. Once the component obtains a line it uses
a method of required parser interface to ask a component that implements
IParserInterface to parse the line. Then the returned parse tree is passed
to a component bound to query interface and so on.

In the component implementation the other components are referenced
only by interface names so the binding can be easily changed without recom-

2

pilation or even changes in the code.
An application is built by binding provide interfaces to require interfaces.

A composite component is constructed almost the same way. Its provide
interfaces are delegated to interfaces of sub-components. Sub-components’
required interfaces that are not provided by other subcomponents on the same
level are subsumed to the composite component’s required interfaces. This
terminology comes from SOFA [3] component framework. Other frameworks
may use other terms to refer to the same principles.

��
��
��
��

PrettyPrinter

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

��
��
��
��

�
�
�
�
�

�
�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

Parser

Engine
Console

Server

CachingEngine

Binding Delegation

Subsumption

CacheLogic

Required interface

Provided interface

Primitive component

Composite component

Figure 1.2: Example of component application. The Console component
is primitive, while the Server component is composite. The Server com-
ponent contains four other components to achieve required functionality —
answering questions from the console.

The component frameworks often allow the user to deploy the components
an application consists from to different machines to improve performance
and reliability. However, the components’ source code looks still the same
regardless of the application is going to be distributed or not.

The typical usage of component methodology in software development re-
lies on the set of ready-to-use components that the developer team may use.
These components can be created by the team during the work on previous
projects or even bought from another vendor. As well as a construction en-
gineer does not design building panels again and again for different buildings
and an electrical engineer uses transistors and chips produced by companies
from different continents, software developers should built new applications
from components they already have with only a few new components devel-
oped for special needs of a particular project.

3

1.2 Model checking

Model checking is a technique that takes a model of a system and a set of
properties and says whether the model meets the properties. The model is
typically derived from software or hardware design.

There is a wide range of formalisms used to express the models. Some
model checkers [4] accept models in languages originally developed for the
model checking, such as Promela. As the model checking was initially used
in hardware development, there are model checkers designed to check models
in hardware description languages such as VHDL or Verilog [5]. To get
these methods closer to practical software developers, there are even quite
successful attempts to use general programming languages such as Java [6]
for modeling. This allows direct model checking of the code. However, there
are still some limitations.

The model checkers may have a predefined set of generic properties, such
as absence of deadlocks, they are able to check. In better cases, they allow
the user to specify its own properties. These properties are expressed by
temporal logic or a kind of assertions in the model description.

There are two main groups of model-checkers. Explicit model checkers
exhaustively enumerates all states of the model. It is checked whether each
state complies to all properties to be checked. The second group — symbolic
model checking tries to work with many similar states at once. Binary Deci-
sion Diagram — BDD is a structure often used in symbolic model-checking.

The model checking process is based on the traversal of state space de-
scribed by the model. These state spaces are often huge because the state
space size is typically exponential to the size of a model description. The
state space explosion is the most serious problem of the model checking that
does not allow it to become widely used by software developers. The state
space explosion allows us to check relatively small tasks. The bigger projects
are not able to be checked with reasonable resources.

The situation in hardware design is much better. The systems do not
have so many states so that model checking already has a practical usage in
this area [7].

1.3 Behavior protocols

The main contribution of behavior protocols is usage of component paradigm
for splitting the model into smaller parts. These parts are checked indepen-
dently. As the state space is exponential to the model size, the splitting of a
model brings a significant reduction of state space size.

4

The basic idea is to describe behavior of each component by regular ex-
pression that captures the traffic on the component boundaries. These ex-
pressions are called behavior protocols.

Having the component behavior described by behavior protocols, three
types of correctness checking can be performed: implementation-to-protocol
obeying, compliance test, and composition test.

However, even the checking of protocol compliance and composition is
exponential and thus resources demanding task.

1.4 Goals

The goal of this thesis is to implement a tool for performing compliance and
composition tests. The tool will be able to be executed in a distributed way
and exploit thus the power of more computer nodes.

As the part of the thesis, a new efficient state space representation must
be created, because the representation used by previous version of behavior
protocol checker does not fit well to the needs of distributed environment.

This work is not concerned in code analysis and checking implementation
of primitive components.

1.5 Structure of this work

The second chapter gives brief introduction into behavior protocols. Addi-
tionally to the grammar and semantics of behavior protocols, the properties
that can be checked are explained.

The next chapter is focused on the principles of behavior protocol checking
and approaches used in previous checkers. Also ideas behind the distributed
version of checker are presented.

The fourth chapter describes the implementation of checker while the
fiveth chapter presents the achieved results. The next chapter contains re-
lated work and the last chapter offers future work topics and conclusion.

5

Chapter 2

Behavior Protocols

This chapter gives the reader a brief introduction into behavior protocols.
Behavior protocols are described formally and in more details in [1].

Behavior protocols are a high-level abstraction used to model communica-
tion traffic on component interfaces. Behavior protocol is a regular expression
used to define the set of all possible finite sequences of method invocations
performed through all interfaces of given component.

As behavior protocols are a high-level abstraction, they do not hold infor-
mation about method parameters. This fact is twofold. First, it significantly
reduces a model state space, which is exactly what we want from a high-level
abstraction, and, second, it allows us to use simple formalism to express pro-
tocols - regular expressions. On the other hand, method parameters often
influence control flow, behavior protocols, however, are not capable to express
this property.

2.1 Model description

The model of an application consists of one behavior protocol for each com-
ponent involved and information about interface bindings and components’
nesting.

2.1.1 Language

A behavior protocol consists of event tokens and operators. Events are used
to express method invocation. Each event consists of an interface name, a
method name and a type. We distinguish following types of events:

• emit of a method invocation request - !interface.method↑

6

• accept of a method invocation request - ?interface.method↑

• emit of a method invocation response - !interface.method↓

• accept of a method invocation response - ?interface.method↓

A method call is represented by four events. First, invoking component
Emmit’s a request. The request is accepted by the target component. The
target component emits a response and, finally, invoking component accepts
the response. However, such level of details is not necessary in many cases.

Following abbreviations are available.

• accept method invocation
?i.m is an abbreviation for ?i.m↑;!i.m↓. A component accepts a
method request and immediately emits a response.
?i.m{prot } is an abbreviation for ?i.m↑;prot ;i.m↓ A component ac-
cepts a method request, performs some actions described by protocol
prot and finally emits a response.

• emit method invocation
!i.m is an abbreviation for !i.m↑;?i.m↓. A component invokes a
method and waits for the response.
!i.m{prot } is an abbreviation for !i.m↑;prot ;?i.m↓. A component
invokes a method and before the response is accepted it can perform
some other operations.

The simplest behavior protocol contains only one event.
Following operators are used to construct more complicated protocols.

Their priority is defined by grammar in Appendix B.

• alternative operator - A + B

Resulting protocol captures all sequences that are captured by A or B.

• sequence operator - A ; B

Resulting protocol captures all sequences that consist of a sequence
captured by A followed by a sequence captured by B.

• and-parallel operator - A | B

Resulting protocol captures all sequences that are created by interleav-
ing of an arbitrary sequence from A and B. This operator is not typical
for regular expressions, but it does not make the language stronger. It
is an abbreviation only, as the same protocol can be expressed by a
combination of alternative and sequence operators.

7

�
�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�
�

ou
t

in

parser

qu
er

y
re

sp
on

se

prettyprinter

Logic

(?in.newLine{!parser.parse;!query.query};
?response.result{prettyprinter.print;!out.putLine})*

Figure 2.1: Component with assigned protocol

• or-parallel operator - A || B

This is an abbreviation for A + B + A|B

• repetition operator - A*
Resulting protocol captures all finite sequences of sequences from A and
empty sequence.

• NULL operator
This is nullary operator. Result protocol accepts only the empty se-
quence.

Having the syntax explained, we can return to our component example
enriched by behavior protocol.

The behavior protocol on Fig.2.1 says that in the initial state the com-
ponent accepts the invocation of newLine method from in interface. Then,
it calls parse method on the parse interface followed by calling query on
the query interface. After all of this is done, the component sends the result
of calling newLine method. Then, the component waits until the result

method on the response interface is invoked. After accepting this invoca-
tion, the print method on the prettyprinter interface is called. Finally,
the result is written to the console via the putLine method on the required
out interface. As this protocol is wrapped by an instance of the repetition
operator, after reporting the result on console the component is ready to
accept next query.

Many useful component properties can be observed from this protocol.
For example, the component is not able to accept next line from the console
until it responds to the last one.

8

2.2 Finite state machines

As a behavior protocol is a kind of regular expression, it can be represented
by finite state machine - FSM [8]. Although this representation is not very
useful for creating particular protocols of real components, it serves well for
theoretical and illustration purposes. Even protocol checking is based on it.

Definition 1 Protocol FSM - PFSMA is a finite state machine accepting
exactly the set of sequences generated by the protocol A.

Examples of protocol FSM representing simple protocols are in Appendix
A.

2.3 Composition of behavior protocols

Because our goal is to check the interplay of components, we must be able to
obtain a behavior description of multiple connected components. The consent
operator is a binary operator over behavior protocols languages. The consent
operator is parameterized by list of method names. Result of the operator is
a behavior protocol capturing behavior of two components synchronized on
the methods from the parameter list.

We denote a consent operator used on the behavior protocols A and B and
parameterized with Sync which is set of synchronized methods as A ▽Sync

B.
The consent operator was not mentioned in the chapter devoted to the

behavior protocol language because a developer can not use it. It is used just
by the checker to put the protocols together.

Synchronization means that two complementary events of the form !event

and ?event are combined into a single event τ event. The idea behind this
is that emitting and receiving of an event is atomic. As these two actions are
atomic and no other action can take place between them we can replace them
with so called tau event - τ event. The tau event represents internal action
that can not be observed by other component in the system. We denote this
method synchronization if all events used to express a method invocation are
synchronized.

As behavior protocols can be represented by FSM, we can define the
consent operator over finite state machines - See Fig 2.2. We call this FSM
Consent FSM. In fact, all implementations of consent operator in previous
behavior protocol checkers were done using finite state machines. Precise
definition of consent operator can be found in [9].

9

?event

(a)

!event

(b)

event

(c) Consent
of previous
protocols

Figure 2.2: FSM notion of consent operator.

By combining protocols of all components that are used to form a com-
posite component, we get the architecture protocol. The example is shown at
Fig.2.3.

2.4 Model properties

There are three general composition errors that may occur during composi-
tion of components and can be detected using behavior protocols - bad ac-
tivity, no activity and infinite activity. By checking the application model
we ensure that none of these errors is present in the system. Recently user
defined application specific properties were introduced in [10]. The Linear
Temporal Logic - LTL is used to specify them. However distributed checker
does not support these properties.

2.4.1 Bad activity

Bad activity occurs when a component tries to call a method and no one
accepts it. This can be caused by the fact that there is no component bound
to the interface or that the bounded component is not in the state that
allows it to accept the call. The first case can not happen if all interfaces are
properly bound. 1

Consider the example on the picture 2.4 with the behavior protocol of the
Console component changed to (!in.newLine+?out.putLine)*. This pro-
tocol allows Console to send another input line to server before the response

1We allow incomplete bindings. This can be useful for component reusability. If the
user is sure that in given environment a component won’t attempt to call a method on its
required interface it is useless to bind the interface.

10

��
��
��
��

PrettyPrinter

��
��
��
��

Parser

consent parametrized by
all methods on binding a

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
� �
�
�
�
�

�
�
�
�
�

Logic

CachingEnginea

d

c

b

consent parametrized by

consent parametrized by

all methods on binding b

all methods on bindings
c and d

Figure 2.3: Iterative usage of consent operator in order to obtain architecture
protocol. At first protocols of components Parser and Logic are connected by
consent operator parametrized by all methods from binding Then the result
is combined with protocol assigned to PrettyPrinter. Finally protocol of
CachingEngine component is added by consent operator parametrized by
all methods from bindings c and d.

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

ServerConsole

in
ou

t

in
ou

t

Console: (!in.newLine;?out.putLine)*
Server: (?in.newLine;!out.putLine)*

Consent: (τin.newLine;τout.putLine)*

Figure 2.4: Consent operator applied to two top-level components. To keep
the example simple, corresponding interfaces have the same name in both
components which is not true in a general case.

11

to the previous one comes. But the server does not accept such a call before
it responds to the previous request. Thus, we get a bad activity composition
error.

2.4.2 No activity

A component is in a final state if a sequence of calls on its boundaries is
captured by an associated protocol. A system is in the final state if all its
parts are in their final states

No activity composition error, often referred to as a ’deadlock’, occurs
when the system is not in a final state and at all its parts waits for events
but no component emits such an event. Thus, the system can never get to a
final state.

Let’s consider another modification of components on picture 2.4. The
Console component stays unchanged, but the Server component’s behavior
protocol is changed to (?in.newLine;?in.newLine;!out.putLine)*. The
modified component expects Console to sent an request for two new lines
before printing out the result. But Console doesn’t send the second line, be-
cause it waits for an invocation of the putLine method. None of the compo-
nents is in the final state, so the system contains the no activity composition
error.

2.4.3 Infinite activity

Finally, the infinite activity composition error is known as ’livelock’. In
contrast to no activity, if an infinite activity occurs, the system still performs
actions. However, as well as for no activity, there is no way how to reach a
final state.

The infinite activity is defined using FSM representation of behavior pro-
tocols. The system contains infinite activity composition error, if the FSM
representing its behavior contains a cycle reachable from the initial state and
there is no path from any state of the cycle to a final state.

This composition error did not prove to be very useful. Similar behavior
is sometimes even desired. For this reason and because the checker would
become more complicated, checking of this composition error is not imple-
mented by distributed checker.

12

2.5 Checking the model part by part

Checking of whole application is performed in several steps. The component
design of an application yields a hierarchy of components. Its leaves are
primitive components implemented in a programming language. They are
used to form composite components and the top of this structure is the
entire application. From this point of view, an application is a component
tree. Fig. 2.5 shows the tree of an application containing two top-level
components. One of them is primitive.

The checking of primitive components is performed at first. In this case,
the code must be analyzed to ensure that the protocol captures all possible
sequences of method invocations generated by the code.

Having checked all children of a composite component, its subcompo-
nents, we can check the component itself. This involves two steps. First,
protocols of all subcomponents are combined using consent operator to form
the architecture protocol. This is called horizontal compliance test. Com-
ponents on the same level are combined and consent operator is capable to
detect composition errors after being applied. Then internal traffic, τ events,
involved in the combined protocol is omitted and the resulting protocol is
checked against the protocol associated with the composite component. This
is called vertical compliance because protocols from different levels of the
component hierarchy are involved. If the tests yield no composition errors,
the composite component is successfully checked and we can use it for check-
ing the next level of hierarchy. Notice that during traversing the hierarchy
up, the implementation details of underlying components are being forgotten
or hidden. On the top level, only horizontal compliance test is performed.

compliance test b
Logic: (?newLine{!parse;!query};

?result{!print;!putLine})*
CachingEngine: (?query;!result)*

Parser: (?parse)*

PrettyPrinter: (?print)*

Server architecture prot.: (?newLine{τparse;τquery};
τresult{τprint;!putLine})*

Tau events ommited: (?newLine;!putLine)*

composition test c
Server: (?newLine;!putLine)*

Console: (!newLine;?putLine)*

Top-level arch. prot.: (τnewLine;τputLine)*

13

Composite
component

Primitive
component

Server

Logic

Engine

Caching Parser PrettyPrinter

Engine Cache

b

c

a

Console

Figure 2.5: Checking of the application from Fig. 1.2. First, the code
analysis of primitive components is performed. Then, compliance test a

ensures that components Cache and Engine can cooperate without a com-
position error and together complies to the protocol of composite component
CachingEngine. This test, as well as test b involves both - horizontal and
vertical compliance. Because all components used by component Server

are checked at this moment, we can continue with compliance test b. The
checking process is finished by horizontal compliance test c.

14

Chapter 3

Checking the protocols

3.1 Checking of an application

As mentioned in the previous chapter, the checking of a system described
by behavior protocols consists of three different steps — primitive component
analysis, horizontal compliance test and vertical compliance test. This section
briefly touches the problems that have to be solved by primitive component
analysis. Then, as it is the main scope of this work, latter two steps are
examined much closer.

3.1.1 Primitive component analysis

The goal of primitive component analysis is to check whether the implemen-
tation corresponds to the given protocol. It involves understanding of the
language used to implement the component and checking whether each se-
quence of calls is captured by associated protocol. Notice that programming
languages used to implement components are always stronger than regular
expressions. The sets of method call sequences generated by the implemen-
tation are thus quite complex. To capture all sequences generated by the
implementation the associated behavior protocol usually includes many se-
quences that the underlying implementation does not produce in fact.

Let us have a component that accepts an arbitrary number of method a

calls and then the same number of method b calls. To express this behavior
exactly, we need expressing power of a stack automaton. As the regular
languages does not have such power, we must write a protocol that accepts
sequence of method a invocations and then sequence of method b calls. But
these sequences need not have the same length.

Another gap between sequences generated by an implementation and a
protocol is caused by absence of method parameters.

15

Implementing source code analysis would be pretty hard and language
dependent. Moreover similar task is already solved by other model checkers.
So, the approach chosen to solve this problem is based on exploiting func-
tionality of existing model checkers of conventional programming languages.
For checking of components written in Java programming language, Java
PathFinder [6] is used. This model checker is quite modular. It allows an
user to specify special actions that are performed at each state. Therefore the
PathFinder can be combined with behavior protocol checker. Combination of
behavior protocol state space and state space generated by PathFinder from
Java component implementation is examined. This approach is explained in
more details in [11].

3.1.2 Horizontal compliance

The horizontal compliance test is based on the construction of architecture
FSM that represents behavior of connected components. This architecture
FSM is another representation of architecture protocol already presented.

Architecture FSM is created from FSM s of behavior protocols the ar-
chitecture consist from. During the construction of architecture FSM all
possible combinations of component states are visited and examined. The
main problem of this technique is the size of the resultant automaton. While
the number of states of FSM s created from the protocols the architecture
consists from are often small, the architecture FSM can be bigger. Its size
can grow exponentially.

3.1.3 Vertical compliance

The vertical compliance test can be easily transformed into horizontal com-
pliance test using the inverted protocol [12]. The inverted protocol P−1 of
a protocol P is created from the protocol P by changing all emit events to
accept events and vice versa. If we want to test whether the architecture
protocol corresponds to the protocol of composite component, all we must
do is inverting the protocol of the composite component and then run the
horizontal compliance test. By inverting the protocol, we create an artificial
component on the same level as other components. This component exactly
generates the traffic that can occur on the composite component boundaries.
Note that we can do both steps — horizontal and vertical compliance test of
the composite component at once.

16

��
��
��
��

PrettyPrinter

��
��
��
��

Parser

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
� �
�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

Logic

CachingEngine

out

in

Server (?in.newLine;!out.putLine)*

(a) Composite component to
be checked

��
��
��
��

PrettyPrinter

��
��
��
��

Parser

�
�
�
�
�

�
�
�
�
�

CachingEngine

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

Logic
Server−1

out

in

(!in.newLine;?out.putLine)*

(b) Result of the Server protocol inversion

Figure 3.1: Example of protocol inversion. Note the change of required
interface to provided interface and vice versa.

3.2 Preprocessing

Preprocessing can be used to hide information about binding into the in-
terface and method identifiers. During the checking itself, these identifiers
are treated just like simple strings. Only their equality or inequality is im-
portant. Because the set of identifiers does not change during the checking,
they can be replaced by integer indexes into a string table. It is useful to
hide as many information as possible into equality or inequality of method
identifiers. Many special cases, such as multiple binding, can be treated this
way.

For the purposes of checking the protocol, we distinguish three classes
of architecture descriptions — gramatically correct architecture description,
semantically correct architecture description and canonical architecture de-
scription.

3.2.1 Grammatically correct architecture description

Definition 2 Let P1, P2, . . . , PN are behavior protocols, Sync1, Sync2, . . . ,
SyncN−1 and Unbound are sets of methods used in the protocols. Then the
sequence ”P1 Sync1 P2 Sync2 P3 Sync3 . . .PN−1 SyncN−1 PN Unbound” is
grammatically correct architecture description.

The grammatically correct architecture description is a list of behavior pro-
tocols interleaved with information about synchronized events. Unbound is a

17

set containing all methods from unbound interfaces. Invoking such method
means bad activity. As it was already mentioned, method calls are mod-
eled using events. There are abbreviations that often hide the details, but
there is no grammar rule that forces the user to keep method invocation
semantics. So, there are some grammatically correct protocols that capture
sequences that can not appear on any component system. Such protocols are
just wrong. The checker can decide whether they are correct or not, but this
information is useless. The protocols do not correspond to the implementa-
tion.

3.2.2 Semantically correct architecture description

A semantically correct architecture description is a grammatically correct ar-
chitecture description containing only semantically correct behavior protocols.
A semantically correct behavior protocol is a behavior protocol that for each
emitted request accepts a response and for each accepted request emits a
response. Using only abbreviations, a developer cannot create a behavior
protocol which is not semantically correct.

These protocols almost capture valid behavior of component systems ex-
cept for one detail. The invocations expressed in behavior protocols do not
keep any information about threads. Because there is no rule that prevents
it, it is possible that emit event of an method invocation is emitted by one
thread and corresponding response event is accepted by another thread. It
does not matter, whether these two threads run within one component or
not. To avoid such situation, we must disallow both — multiple bindings
and invocation of the same method in two threads running simultaneously
within one component. Fortunately, there exist a set of rules that enables
fully automatic replacement of these constructs. These are the same as the
rules used during the transformation of ADL into the Canonical architecture
description.

3.2.3 Canonical architecture description

We cannot expect that all possible components which might cooperate with
our component will refer its interfaces by the same names. Moreover these
names would have to be the same as author of the component used in the
behavior protocol provided with it. Even if the author of two components is
one person, it is often necessary to have different names for the same binding.
For example, first component’s input is the second component’s output and
so on.

18

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

ServerConsole

ou
t

inou
t

in

Console: (!out.newLine;?in.putLine)*
Server: (?in.newLine;!out.putLine)*

Figure 3.2: Interfaces with different names are bound together.

A canonical architecture description is a semantically correct description
that uses special interface naming convention. The naming convention is
quite straightforward. Its main purpose is to keep information about com-
ponent bindings. The general idea is to replace original interface names in
the protocols by the strings that uniquely identify particular bindings. The
string used to replace original interface names contains names of both inter-
faces involved in the binding. It also contains names of the components to
distinguish equally named interfaces from different components.

We already used example from Fig 3.2 to explain consent operator —
Fig.2.4. This time the interfaces of the Console component are mutually re-
named. It states better the component’s notion. To get binding information
into protocol of component Console we change it to

(!Console_out->Server_in.newLine;

?Server_out->Console_in.putLine)*

The first part of interface name is before arrow (→) sign. It is fully quali-
fied and determines required interface involved in the binding. The second
part determines provided interface involved in the binding. The protocol of
Server component is transformed into

(?Console_out->Server_in->newLine;

!Server_out->Console_in.putLine)*

Multiple bindings

This simple approach works until there are no multiple bindings. Consider
example from Fig. 3.3. It depicts an application where three components
use services of one logging component. The Log component is not able to

19

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

in

lo
g

lo
g

lo
g

C1

C2

C3

Log

st
or

ag
e File

i

Log: (?in.newMsg{!storage.writeLine})*

Figure 3.3: Example of multiple bindings.

process requests simultaneously. Using previous simple interface renaming
rule, we get three candidates for new name for in interface. C1 log->Log in,
C2 log->Log in and C3 log->Log in. So we just put an invocation of each
method from the multiply bound interface three times.

(

?C1_log->Log_in.newMsg{!Log_storage->File_i.writeLine}+

?C2_log->Log_in.newMsg{!Log_storage->File_i.writeLine}+

?C3_log->Log_in.newMsg{!Log_storage->File_i.writeLine}

)*

The invocations are connected with alternative operator so that the Log

can still process just one request in each moment. Now, we are sure that all
responses are always received by the component that emitted a request.

Multiple threads

The last problem mentioned in the previous paragraph was invocation of one
method from two threads running simultaneously within one component.
The semantics of the consent operator does not ensure that the method
response is accepted by the same thread that emitted the request.

We can distinguish threads by adding their numbers to interface names.
The Fig 3.4 shows three components. The C1 component can invoke newMsg

method twice simultaneously. So, the invocations are distinguished by thread
number. There must be a special version of complementary event for each
thread containing the right number.

20

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

in

Log

st
or

ag
e File

i

lo
gC1

C1:!log.newMsg||!log.newMsg
Log:?in.newMsg*

Figure 3.4: Example of multiple threads within one component.

C1: !C1_log->Log_in#1.newMsg || !C1_log->Log_in#2.newMsg

Log: (?C1_log->Log_in#1.newMsg + ?C1_log->Log_in#2.newMsg)*

As the Log component can process only one invocation, the distinct ver-
sions are connected by the alternative operator. This architecture still con-
tains the bad activity composition error, but it is caused just by the fact that
the components are really not compatible and not by inexact representation
of the architecture.

We can use this approach, because the behavior protocols are not capable
to capture dynamic thread creation. We always know the number of threads
the component uses in every state.

An important property of this naming convention is the existence of a
simple algorithm that converts a semantically correct architecture description
into a canonical architecture description. This kind of preprocessing greatly
simplifies the task of the checking. We need not care about threads and
multiple bindings during the checking itself. Also, the information about
bindings that the checker requires is limited to mere list of synchronization
events.

Under the presumption of absence of multiple bindings, we can also state
important property of the consent operator — the result of composition of
deterministic protocols is also deterministic. This property simplifies the
checker too.

Because it requires the information about bindings, this preprocesing is
closer to the ADL parser than to the checker, so it is not a part of the
distributed checker implementation.

3.3 Consent FSM

Definition 3 The consent FSM CFSM
Sync
A,B is FSM that accepts all se-

quences of events that are generated by the protocol A ▽Sync B.

21

Definition 4 The consent FSM CFSM
Sync1,Sync2,...,SyncN−1

P1,P2,...,PN
is FSM that ac-

cepts all sequences of events that are generated by protocol P1▽
Sync1(P2▽Sync2

. . . (PN−1 ▽
SyncN−1 PN).

Definition 5 Let ”P1 Sync1 P2 Sync2P3 . . . PN−1 SyncN−1 PNUnbound” is
canonical architecture description. Then we say that CFSM

Sync1,...,SyncN−1

P1,P2,...,PN

is architecture FSM.

The construction of architecture FSM is a natural way to enumerate all
valid states of the architecture. That’s why it is the key part of all current
behavior protocol checkers. The problem they all have to face is its size.

In order to prove absence of composition errors during the construction
of CFSM

Sync
A,B , we have to check the following conditions for each state S :

• Bad activity — Let SA is a state of PFSMA corresponding to the S

and SB is state of PFSMB corresponding to S. For each edge labeled
by the synchronized emit event coming from the SA, resp. SB there
must be an edge coming from SB, resp. SA labeled with complement
accept event. There cannot be outgoing edge labeled by an emit event
from the list of unbound interfaces.

• No activity — State S contains an outgoing edge or SA and SB are
final.

• Infinite activity — The state S is not a member of a cycle or there is
a way from the S to the final state.

3.3.1 Previous versions of the checker

This work is the third attempt to implement behavior protocol checker. The
first one was based on explicit creation of architecture FSM in memory. This
approach does not even try to cope state space explosion problem, so its usage
is limited to the simple examples far from the practical usage. However, it
was the first working one and gave feedback valuable for the next versions of
the checker and even development of the behavior protocols semantics.

The next version of the checker is based on Parse Tree Automaton - PTA
[2]. This time, no explicit FSM representation is used. The states of an
architecture FSM are identified only by positions in the parse trees of the
protocols. Having a position for each protocol the architecture consists from,
we can relatively easily compute the positions in the next step. This way,
we can traverse the whole state space. All the visited states are stored to
ensure program termination and to prevent repetitive generation of already

22

visited parts. The number of states is still exponential, but this time, only
bit-efficient encoded state identifiers based on the positions in parse trees are
stored. There is no need to store edges because we can compute them from
the parse trees whenever we want.

This approach utilizes available memory much better, so this version of
the checker is already capable to check relatively complex architectures. The
disadvantage is that the operations with identifiers are time consuming be-
cause they are quite complicated. As the protocols are not deterministic
in general, not only one position but the set of potential positions for each
parse tree must be encoded into state identifier. This yields variable length of
identifiers. Another consequence of the complicated state identifiers is rather
small set of available operations with them. State neighbours cannot be gen-
erated from bit-efficient form of identifier so that another, not so efficient,
representation must be used on the stack.

3.3.2 State representation

The state representation used by the distributed behavior protocol checker
is somewhere between previous two approaches. It is based on the following
presumption.

Presumption 1 The state explosion is caused mainly by the composition of
protocols while the state spaces of particular protocols are relatively small.

This presumption obviously does not hold in all cases because of parallel
operators. Important fact is whether it holds in ’practical’ cases.

CFSM
Sync
A,B is similar to the cartesian product of the automatons PFSMA

and PFSMB. The difference is in edges. All edges labeled by events used
to model methods from Sync are removed. Edges representing τ events are
added instead. In other words, one edge labeled by τ event is replacing a
pair of edges labeled with complementary events. The resultant automaton
is equal to the cartesian product if Sync is empty. A simple example is on
Fig. 2.2.

The distributed checker uses representation of the architecture FSM states
called index vectors. Explicit representation of deterministic protocol FSM is
built in the memory for each behavior protocol. The states of protocol FSM
are identified by numbers. The numbers are given by depth first traversal or-
dering. A state of architecture FSM is then identified as a vector of identifiers
of protocol FSM s’ states.

An example on the Fig 3.5 shows consent FSM of the protocol !a* ▽a,b

(?a+?b)*. Because we only have two protocol FSM s, the identifier of consent
FSM has two parts. The first one identifies a state in protocol FSM for

23

Figure 3.5: State identifiers example

protocol !a* and the second identifies a state in protocol FSM of (?a+?b)*.
Note that many states are not reachable.

This representation is similar to the state identification used by Spin
model checker [4]. It uses the same presumption that the state explosion
is caused by the parallel composition. A state of the Spin model is also
identified by a vector of indexes. The n-th index identifies a record in the
array associated with the n-th process. There is an array associated with
each process that contains descriptions of all reachable states of the particular
process. The descriptions consist of states of local variables and a program
counter. Because the number of reachable states for each process and even
number of processes is not known in advance, the size of the Spin identifier
is variable. In our case, we can afford to assign identifiers to all states of
protocol FSM. Their state spaces are much smaller — there are no variables,
just program counter. The number of protocols also does not change in our
case. It means that we have a fixed size of identifiers.

In comparison to PTA based representation, this one is much simpler.
In consequence, the implementation of the operations is simpler too. The
most important operations are computation of neighbours and bi-directional
transformation of state identifier into bit-efficient version and back.

Having a state identifier [SA, SB] of a state from CFSM
Sync
A,B , where SA is

the identifier of a state from PFSMA and SB is the identifier of a state from
PFSMB, we can easily get all neighbours in the following way:

24

Algorithm 1 This function takes state identifier S and the index of the
last edge used in each protocol. These three parameters are encapsulated into
iterator, which can be then used in a standard way. The function also requires
PFSM A and PFSM B which are passed in another way.

It returns state identifier - vector in square brackets.

function getNextNeighbour(S,lastEdgeFromA, lastEdgeFromB):

S_A = part of the S identifying state of protocol A

S_B = part of the S identifying state of protocol B

if (hasNextEdge(PFSM_A,S_A,lastEdgeFromA))

edge_A = getNextEdge(PFSM_A,S_A,lastEdgeFromA)

if (edge_A in Unbound){

if(edge_A is emit)

Bad Activity Detected

else

return getNextNeighbour(S,edge_A,lastEdgeFromB)

if (edge_A in Sync)

if (edge_A is emit)

acceptLabel = getComplementEvent(edge_A.label)

edge_B = getEdgeLabeledBy(PFSM_B,S_B,acceptLabel)

if (edge_B is Null)

Bad Activity Detected

lastEdgeFromA = edge_A

return [edge_A.target,edge_B.target]

else

return getNextNeighbour(S,edge_A,lastEdgeFromB)

else

return [edge_A.target,S_B]

else if (hasNextEdge(PFSM_B,S_B,lastEdgeFromB))

.. the same with A replaced by B and vice versa.

else return Null

The situation for more than two protocol FSMs is similar. The bad activity
detection is secured by the algorithm itself. No activity is found if a state

25

does not have any outgoing edge and it is not a final one. The infinite activity
detection is not so easy, so it is explained later.

The transformation into the bit-efficient form is easily expressible by the
following formula.

Let Id = [idi]
dim−1
0 is an architecture FSM state identifier. dim is the

number of protocols in the architecture description, idi is the identifier of
the state of i-th protocol FSM and StatesPj

is the number of states of j-th
protocol FSM.

Then, the bit-efficient representation Ideff is computed using following
formulas:

Ideff =
dim∑

i=0

idi ∗ basei (3.1)

basei =
i−1∏

j=0

StatesPj
(3.2)

The basei depends only on the number of states of protocol FSM s, so it
is computed only once. We have a simple and quickly computable formula
for bit-efficient state encoding. Also, the inversion is not very demanding.
This is important especially for the distributed environment. We can use
only bit-efficient state identifiers for communication between nodes.

Another important property of the index vectors representation is that
possible non-determinism is eliminated during the construction of protocol
FSM s . This means that we need not solve non-determinism during genera-
tion of consent FSM.

In comparison to the PTA based representation, this representation has
one big disadvantage. It does not address state space explosion caused by
parallel operators within one protocol. During creation of explicit protocol
FSM, we can run out of the available memory easily.

An obvious solution of this problem is to use the same idea one level
lower. Use explicit automatons only under the parallel operators. But there
are two issues. The parallel operators can occur not only on the top level
of parse trees. Consider an example ?i.initialize; (?i.m1|?i.m2)*;

?i.terminate. It means that number of component threads differs dur-
ing the execution and that there must be a support for thread creation and
stopping. There are two solutions for doing this — hierarchical FSM s or
support for synchronization.

Synchronization support solves this problem by moving the parallel oper-
ator to the top level and postponing its run. Our example would be changed
to

26

(?i.initialize; [!P11.start, !P12.start];

[?P11.stop, ?P12.stop];?i.terminate)

| (?P1.start;(?i.m1)*;!P11.stop)

| (?P1.start;(?i.m2)*;!P12.stop)}

The synchronization is needed to ensure both threads are terminated atom-
ically. All events from the list in the brackets must be accepted atomically.

The main idea of hierarchical FSM is representation of the whole parallel
operator subtree by just one huge state. This state contains two indepen-
dently running automatons — one for each operand. Outgoing edges of the
state can be used only if the inner automatons are both in a final state. The
inner FSM can be hierarchical again.

Both solutions of this issue would not be easy to implement and it would
decrease the speed of the checking. However, the reason why they are not
used in the checker is that they do not solve the second, more important
problem. It is the non-determinism. The operands of the parallel operator
can be non-deterministic. It would not be a problem — we can convert
them into deterministic ones. The next source of non-determinism is parallel
run of the operands. This kind of non-determinism does not matter too,
because in canonical architecture description usage of the same method in
simultaneously running threads is not allowed for another reason already.
The problem is that the non-determinism can be introduced by operators
on the higher levels of the parse tree. For example, protocol A+(A|B)+B

(or-parallel operator) introduces non-determinism.
I do not see any other solution to efficiently cope this non-determinism

than postponing it to the architecture FSM generation. It would mean en-
coding sets of states into architecture FSM states identifiers. Doing this, we
would get much closer to the PTA based representation and lost simplicity
of state vectors.

This is why we build explicit automaton even for parallel operators instead
of using on the fly generation.

3.4 State space division

In order to run the task in parallel we must provide rules that split the work
among available machines.

The requirements for such division follow:

• Minimal communication between machines — communication is typi-
cally much slower than computing itself.

27

• The amount of work assigned to particular machines must be compa-
rable — for best utilization of available resources.

• Minimize duplicity work done by distinct machines

These requirements are not orthogonal and influence each other.
Let an architecture description contains n behavior protocols. Then the

proposed state identifiers are vectors having n elements. As the number of
states is finite, we can enclose all state identifiers into n-dimensional cuboid.
Thanks to the depth first traversal based ordering of states from protocol
FSM, we can be sure that if two vectors are close, the states they represent
are close too.

If we use index vectors as representation, we can formulate problem of
state space division as assigning parts of n-dimensional cuboid to the avail-
able machines. We say that an edge is crossing machine boundary if it heads
from the area assigned to one machine to the area assigned to another ma-
chine. The number of states assigned to one machine is number of states
that belong to one of the areas assigned to the machine.

The good assignment has small number of edges crossing machine bound-
aries and each machine has similar number of assigned states. The small
number of edges crossing machine boundaries means small communication
between machines. By assigning a similar number of states to all machines
we achieve uniform workload distribution. Using explicit assignment of the
states to machine we ensure that no state is examined by two distinct ma-
chines. Thus, there is no duplicity work caused by distribution.

Figure 3.6: Participants

Before continuing with distributed traversal algorithm, I will present par-
ticipating processes. See Fig. 3.6. The reason for using a distributed ap-
proach is not to achieve higher robustness in our case. So, we can afford to

28

have a special and unique ’arbitrator’ process called server. A user commu-
nicates with the server using the console process. The work itself is done by
client processes.

When the user wants to check a protocol, he uses the console to pass
the canonical architecture description to the server as a string. The server
creates a parse tree and protocol FSM for each protocol from the description.
At this moment, problems with insufficient memory caused by many parallel
operators can appear. When the automatons are constructed, they are sent
to the clients and the checking can begin.

Algorithm 2

Divide the cuboid among the machines

Start the traversal of the area containing the initial state

If the machine A achieves a state S out of its areas

send the state S to the server

The server decides that the state S belongs to the machine B

The machine B obtains the state S from the server

If B was idle it starts traversal from the state S

else B adds the state to the queue

Finish when all machines are idle and all messages were

received.

This simple algorithm does not provide the answer to two important
questions. How to divide the cuboid among machines and what traversal
strategy should be used.

3.4.1 Traversal strategy

There are two commonly used traversal strategies. Breadth First Search
— BFS and Depth First Search — DFS. DFS is used more often in model
checking. Its advantage is that when an error is detected, a counter example
is already on the stack. However, in the distributed case, we have more stacks.
When one machine reaches its boundary, the state identifier is sent to another
machine. But the first one does not wait for the result of traversal performed
by the second machine. It means that we cannot exploit this feature for
reporting errors. DFS used for traversal of architecture FSM is kind of local
because the identifiers of the protocol FSM states are assigned using DFS
too. It means that it begins with the states identified by vectors containing
low indexes and smoothly continues to higher indexes.

29

The memory requirements for the stack are given by the size of the longest
trace. The size of the queue used in BFS is not limited so naturally. In the
worst case it can be exponential to the size of the longest trace but it is very
rare.

The experiments shows us, that the memory requirements does not give
us strong preference.

An important difference is that the BFS traversal is not local. It quickly
skips to the vectors with higher indexes. This locality property shows to be
important for final decision.

3.4.2 Dividing the cuboid

Static assignment

The idea of the static assignment is simple. Let the number of available
machines is m. We know in advance how protocol FSM s looks like. We
can use this knowledge for splitting the whole cuboid into m areas. The
traversal is started by the machine that obtained the area containing the
initial state. As we want the rest of machines to start immediately we use
BFS traversal strategy. It ensures that the vectors that belong to the other
areas are reached pretty soon. Fig. 3.7 shows an example.

In this example, the simplest division was used. The cube is just split
to two halves of equal volume with a hope that the number of reachable
states within these areas is similar. This division utterly ignores the second
criterion — the number of edges crossing the machine boundaries.

The disadvantage of the static assignment is obvious — if the initial divi-
sion is bad, we can not change it later. And we do not know that particular
division is bad until we try it. It can happen that some area is even inacces-
sible. In such case, the machine this area was assigned to is idle during the
computation and its memory remains unused.

However, for many cases, this solution works better than others, because
it has the smallest overhead. Also, we know in advance which part of protocol
FSM particular client will need. Thus, we can send only the necessary parts
to each machine. It can be very useful especially in cases where Presumption
1 does not hold at all.

Dynamic assignment

This approach is similar to the previous one. At the beginning, we have the
same n-dimensional cuboid and m machines. This time we split the cuboid
to more parts than m — let us say q. Only the area containing the initial

30

Figure 3.7: Static assignment — Let us have two machines and an architec-
ture description containing two protocols. Along the edges of the cuboid are
protocol FSMs. The states of architecture FSM are within the cuboid. We
know the number of states of protocol FSMs so we can split the cuboid into
two parts and assign them to the machines. The area containing the initial
state is assigned to the machine A, so it can start the traversal. The ma-
chine B is waiting until the machine A reaches a state from the second area.
Because the BFS traversal is used, the state from second area is reached in
the third step.

state is assigned to one of the machines. Then, traversal of the initial area
is run. Again, BFS is used to reach a state out of the initial area. When the
server obtains a state identifier, which is a member of an area, which was not
assigned yet, it assigns the area to one of the idle nodes. If no machine is idle,
the server must remember the state identifier until such machine appears.

Once an area is assigned to a machine the assignment cannot be changed.
The problem is that one area can contain more parts of architecture FSM,
which are not connected within area. In consequence the machine can become
iddle although there are still many states reachable from the initial state
that were not visited. The iddle machine asks for another area. This way
number of areas containing majority of reachable states can be assigned to
one machine.

Number of areas q is twofold. The more areas we have, the better approx-
imation of reachable states we get. It means uniform utilization of available

31

memory and CPU power. On the other side, more areas mean more bound-
aries and more communication and overhead.

There is also a requirement to the server process to remember the reached
states of the unassigned areas. There can be a problem with insufficient
memory if wrong division of the cuboid is chosen.

Dynamic reassignment

While the previous two solutions were rather similar, dynamic reassignment is
completely different. It starts with assigning the whole cuboid to a machine.
This machine starts the traversal from the initial state. If there is an idle
client B, other client A, which is not idle, is asked for part of its area. The
client A then interrupts its own traversal and splits the assigned area into
two parts. It is important to split the area in such a way that one part
contains all states already reached by client A, while the rest is completely
untouched. This is achieved by using DFS traversal strategy.

Here, we are utilizing the locality of DFS already mentioned in the section
about DFS. The bounding cuboid of all reached states is obtained by remem-
bering the maximal identifier used in each protocol FSM. When a client splits
one of its areas, at least one state from the new part must be reached quickly.
We need to have an entry point reachable from the initial state. To get such
state soon, BFS strategy is used for a while.

The example on Fig. 3.8 we already used. This time, dynamic reassign-
ment is used. Fig. 3.8 (a) shows a situation shortly after beginning. There
is only one running client A performing the DFS traversal. Notice the upper
bounds. Each visited state is in a bounded area. This is important, because
we are sure that when we create a new area within the rest, no visited state is
here. In consequence, set of the visited states within the new area is empty.
Thus, we need not transport it to the new destination.

After a while, a request from the client B appears. The client A stops
the DFS traversal for a while and somehow splits the untouched area behind
bounds into two parts. Then, the client A must reach at least one state from
the new area which is reachable from initial state. To obtain it quickly, BFS
is used for a while. The BFS queue is initialized with the actual DFS stack.
When a state belonging to the new area is reached, the area is delegated
to the client B, which starts its own traversal. Each area manages its own
upper bound. The beginning of the client B traversal is on the 3.8 (b).

This approach is the most complicated and therefore it has the biggest
overhead. Let us focus to an unpleasant consequence. The client B contin-
ues with the traversal. It also uses DFS, so initially the vectors containing
rather low states are examined. It means that the client B often touches the

32

(a) The situation shortly after beginning. The entire cuboid is
assigned to the client A, which is performing DFS.

(b) The client A split its area, which was assigned to the client
B.

Figure 3.8: Dynamic Reassignment

33

boundary. The states belonging to the client A are transferred. But if the
client B becomes idle before the client A it asks the client A for the next
area. The client A again assigns the right part of its area. But there is lot
of states waiting in its incoming queue that belongs to the newly assigned
area. So they all must be transferred back to the client B. An example is on
Fig. 3.9.

(a) States are collected in the
client A queue.

(b) All states must be moved
back to the client B.

Figure 3.9: Dynamic reassignment overhead example

Because the assignment can change in each moment, we must really use
server process for routing the states to their destinations.

3.4.3 Dividing the state space in the local checker

Division of state space can be useful even in the local version of the checker.
The advantage appears when we are checking a task which does not fit into
the physical memory and the model checker is slowed down by swapping.

Consider a checker using one huge hash map, which does not fit into
the physical memory, to remember identifiers of all reached states. When
neighbours of a state are reached, the hash function typically assigns to
them very different numbers. It is exactly the way a good hash function
should behave. It also means that with a high probability the virtual memory
addresses used to store each neighbour is far from the other addresses and
also from the address where the parent’s identifier is stored. But the virtual
memory performance strongly depends on the locality of memory accesses.

34

To use the locality hidden in the architecture, all we must to do is to
divide the state space. Each part owns its own hash map used to store
reached states from this part. These local hash maps contain less states
so they fit into the physical memory. When one part of the state space is
examined, all neighbours of a state belongs to the same hash map with a
high probability. And if we are checking this part of the state space for a
while, it is already loaded into memory.

3.5 Reporting errors

The PTA based checker provides two different ways of error reporting. The
first one is the error trace — a sequence of events labeling the path from the
initial state to the state where a composition error was detected. The second
one is the annotated protocol — input behavior protocol containing special
marks identifying positions where the error was discovered.

Using the sequential DFS is the simplest way to get the error trace. There
is only one stack containing the path from the initial state to the state being
currently examined. All that must be done is to print out the labels along
this path if composition error is detected.

Because we do not use only DFS and even DFS is run in parallel, we
have many stacks. Even the data from the different stacks does not typically
create a path as the distinct traversals do not wait for each other.

We need an additional data structure for reporting a stack trace. It allows
us to provide error traces independently on the chosen traversal strategy. We
already have a structure for remembering the visited states. Here, except for
the state identifier itself, we can also remember the first state each item was
reached from. Doing this, we are getting the spanning tree of the graph
representing the automaton. When a composition error is found, a path
coming from the initial state to the current state can be reconstructed from
this structure.

In order to report the annotated protocol, we must keep an mapping of
protocol FSM s states to the parse tree nodes.

3.6 Infinite activity detection

Detection of the infinite activity is more complex than the detection of the
other composition errors. It requires information gathered from many states.
These states can be distributed over all machines. That’s why we are going
to discuss it after the section about distribution.

35

The architecture contains infinite activity if and only if there is a cycle
of states reachable from the initial state such that there is no path from the
cycle to a final state.

There are two relatively independent problems that must be solved —
managing cycles and detecting whether a final state can be reached from a
particular state.

3.6.1 Reachability of final state

A simpler task is deciding whether there is a path coming from a particular
state to a final state. Using sequential DFS, we can get it quite easily. When
returning from a subtree, we know about each child whether there is a path
from the child to a final state. So we can say that there is a path from the
particular state if the same property holds at least for one of its children.
But this is not our case because we do not use single-threaded DFS. To get
this information, we must use the spanning tree. It is created during the
traversal and remains in the memory when the traversal finishes.

Algorithm 3 Visited is spanning forest containing visited states. Each state
remembers one of its parents. OK is a set containing states a final state can
be reached from.

for each final state FS from Visited

move all states on the path form initial state to FS to OK

while (Visited is changing)

for each leaf S from Visited

for each C child of S (architecture FSM)

if C is member of OK

move S and all ascendants from Visited to OK

break

Remember that spanning tree is typically distributed over all clients and
that the set OK can be too large to fit into the memory of one computer.

3.6.2 Managing cycles

Now, let us focus on cycles. Instead of providing clever way to manage them,
we prove that we need not manage them.

Theorem 1 Let architecture FSM does not contain the bad activity or no
activity composition errors. Then the system contains infinite activity if and

36

only if it contains a state w such that there is no path from the state w to a
final state.

By definition, the system contains infinite activity if there is an cycle
s1, s2, . . . , sk such that ∀i ∈ {1 . . . k} no final state is reachable from si. We
can denote one of the states w and implication from left to right is done.

Presumption of the opposite implication is that we have a state w such
that no final state is reachable from w. Let us take an arbitrary path p

starting in the state w and finishing in the state z such that z does not
contain any output edge. Let us suppose, that the path p is not a prefix of
another path. There can not be a final state on the path p because it would
be contradiction. So the state z is not final, but it does not have any output
edge. It means that there is no activity or bad activity in the system, which is
contradiction with theorem presumption. In consequence all paths starting
from the state w are prefixes of other longer paths. Because architecture FSM
is final each path starting from the state w contains a cycle. And because
there is no final state reachable from the state w, there is also no final state
reachable from this cycle.

When we are sure that a system does not contain other composition
errors, we need not care about cycles. But we are detecting infinite activity
from the spanning tree after the construction of architecture FSM. If there
was another composition error, it would be detected in the previous phase
during the construction.

3.7 Heuristics for state space division

Until this point, we did not consider different ways of splitting the state
space. In the previous examples, we just divided it into few parts of the same
size. This splitting respects only the requirement for the similar number of
reachable states assigned to the machines. It utterly omits the requirement
of minimal number of edges crossing machine boundaries. On the other side,
the best splitting from the point of view of minimal number of crossing edges
is no splitting. We need to find a balance between these two requirements.

A very coarse estimate of the number of reachable states is volume of the
n-dimensional cuboid.

If we want to respect crossing edges, we must use more information from
protocol FSM s than the number of states.

Let us have the architecture A. Its behavior is described by CFSMA =
CFSM

Sync1,Sync2,...,Syncn−1

P1,P2,...,Pn
. Let CubeA is a n-dimensional cuboid containing

all state identifiers of CFSMA. Let us denote CEPk
(l) as the number of edges

37

crossing the boundary between two areas obtained by splitting CubeA at the
number l on the axis k. StatesPi

is the number of states in PFSMPi
and

EPk
(l) is the number of all edges E in PFSMPk

such that E =< Ida, Idb >

where Ida and Idb are state identifiers of connected states and Ida <= l <

Idb.

∀k, l : CEPk
(l) <= EPk

(l) ∗
n∏

i=0,i6=k

StatesPi
(3.3)

In the following text, the right part of the equation is referred to as
crossing edges upper bound CE

upBound
Pk

(l)

CE
upBound
Pk

(l) = EPk
(l) ∗

n∏

i=0,i6=k

StatesPi
(3.4)

We want to chose k and l such that CE
upBound
Pk

(l) is minimal. However,
we do not get minimal CEPk

(l) necessarily this way.

Algorithm 4 Computation of EProt(l) for a particular protocol FSM.
The result is in the array EdgesOver, which is an array of the size equal
to the number of states in the protocol FSM. Items are initialized to zeroes.
DEdgesOver[i] contains differences between EdgesOver[i] and EdgesOver[i+1]

For each Edge E=<S1,S2> from protocol FSM

DEdgesOver[S1]++

DEdgesOver[S2]--

sum = 0

for(i = 0 ; i<number of states ; i++)

EdgesOver[i]=sum

sum+=DEdgesOver[i]

This way we can split a cuboid with respect to the number of edges
crossing machine boundaries. However the volume assigned to particular
machines can differ.

Let us suppose that we want split CubeA along the axis k into p parts.
The protocol corresponding to the axis k has StatesPk

states. It means that
we are looking for splitting points s0, s1, . . . , sp such that ∀i ∈ {0, . . . , p−1} :
si < si+1 , s0 = 0 and sp = StatesPk

.

38

If we want to numerically rate how much a particular division comply
with the requirement for the similar area volumes, we can use variance of
splitting point distances σ2.

σ2 =

∑p−1

i=0 (si+1 − si −
StatesPk

p
)2

p
(3.5)

Finally, we can combine both criteria into one expression.

Unsuitability = Cedges ∗
p−1∑

i=1

CE
upBound
k (si) + σ2 (3.6)

Where Cedges is a constant expressing how many times time takes trans-
mitting of one edge than checking of one state. We are looking for s0, s1, . . . , sp

such that Unsuitability is minimal.
This rating can be easily extended for splitting in more axes.
Finding the smallest unsuitability might not be easy. The methods of

constraint programming — CP can be used [13]. CP tasks are often NP-
complete, but recall that the number of splitting points is typically small,
somehow derived from the number of available machines.

It is important to mention that all of this is just a heuristic. By choosing
a division that has rather small unsuitability, we avoid ’obviously bad’ di-
visions. Moreover, this heuristic depends on the estimation CE

upBound
Pk

(l) of
the number of edges crossing areas. The experiments shows that this upper
bound is too coarse. The graphs comparing this estimate with real values
are in the appendix C.

To conclude this section, I did not find any heuristic that works well in
average case. It is a good topic for future work. The current implementation
thus divides the state space to the parts of equal volume.

39

Chapter 4

Implementation

4.1 Language, platform, libraries

The tool is implemented in Java 1.5. The main reason is that the rest of the
Sofa framework including the previous version of the checker is also imple-
mented in Java. The built-in middleware and networking support together
with the platform independence were also considered to be useful.

The parser of architecture descriptions is generated using JavaCC — Java
Compiler Compiler.

For building, Apache ANT is used.

4.2 Distributed checker processes

There are three different kind of processes used in the checker. They are
depicted on Fig 3.6. The server process is used to manage information about
registered clients and to control the computation. The number of the client
processes performs the checking itself and finally, the console process is used
to submit a task to the server and to report the result.

4.2.1 The Server

When the server process is started, it exports two Java RMI interfaces. One
is used to accept requests from the console process and the other is used by
the client processes for registration.

When the user submits a task from the console process, the server creates
a new RMI object representing the new task and notifies all clients. This
object cares about assigning the parts of the state space to the clients, sending
the states to the proper machines and termination detection. There are three

40

different task classes provided. Each is specialized to a different assignment
strategy. The user chooses the one he wants to use by setting a Java property.

The object architecture description is created during the initialization
of the server task object. It consists mainly from creation of finite state
machines. The server task object also opens a socket for each client. These
sockets are used for transmitting states.

During the checking, the server is only waiting for messages coming from
both — sockets and RMI. From the sockets, new state identifiers are coming.
If there is a state identifier coming from a particular client, it means that
this state was reached by the edge crossing boundary of the area assigned to
the client. The server knows where the new state belongs to and writes it
into the proper socket. It means that all such states go through the server.
This is potential bottleneck. I decided for this solution to support dynamic
reassignment. This was the simplest way to manage information about the
state space division, which is changing. Other assignment strategies — static
and dynamic would allow sending of states directly between clients.

Through RMI interface, the server obtains notifications about the idle
clients and the composition errors found. If a new idle client notification
occurs, the server tries to somehow obtain a new area — the way it is accom-
plished depends on the chosen assignment strategy. The new area is assigned
to an idle machine. If there is no more work, the machine remains idle. If all
machines are idle, termination detection is performed. If it succeeds, the task
is finished — the clients and the console are notified and the exported task
object is destroyed. If a composition error is found, the task is terminated
immediately.

If a communication error occurs, we cannot continue. In such a case, the
task is restarted from the beginning using only the rest of available clients.

Two different approaches for communication were chosen, because re-
quirements for sending the state identifiers are different from the rest of
transmitted events. Sending many few-bytes-long state identifiers over RMI
would cause huge overhead. Using sockets, we can use buffering to transmit
many identifiers in one network packet. The rest of communication is done
via RMI, because it is easier to implement and maintain.

Notice that there is very little communication between the console and
the server. The console can be far from the server, while the clients should
be in the same network segment as the server.

4.2.2 Clients

When a client process is started, it is registered at the server process. After
the registration, it waits for the task. When a task is assigned, a new RMI

41

object representing the task from the point of the client view is created.
Then, the client process still does not have its own part of the state space,
so it becomes idle and notifies the server about it. The server assigns a
new area to the client in response. If the new area contains at least one
entry point, the traversal can begin. The entry point is a state reached by
another client or the initial state. Again, we have different task objects for
different traversal strategies. Client task object for the static assignment is
the simplest one. There is only one area assigned to each client in this case.
It uses the BFS traversal strategy. The same strategy is used also by the task
object for the dynamic assignment. This time, many areas assigned to each
machine must be maintained. The task object specialized for reassignment
uses the DFS strategy.

There are two types of areas — one for the BFS and other for the DFS
traversal strategy. Each area contains a structure that represents the span-
ning tree of the visited states. It is used to remember already visited states
and for reconstruction of the error trace. It can be also used for the infinite
activity checking, but this feature is not supported in the current implemen-
tation.

During the traversal the client is receiving the states that were generated
by other clients and that belong to one of its area. It is also sending the
states that generates and does not belong to any of its areas to the server.

4.2.3 Console

The console process does not do anything else than reading architecture
description, sending it to the server as a string and waiting for response.
The intention was to make it as simple as possible so that new consoles can
be implemented with a minimal effort. It should help to incorporate the
checker into the existing Sofa ADL parser. Another interesting option is
implementation of a web interface to the server.

Currently, just a simple command line version is implemented.

4.2.4 Termination detection

The termination detection is performed by the server when all clients are
idle. It is based on the counting overall number of states received and sent.
When the number of the received states is equal to the number of states sent
and all clients are still idle, we can terminate the task. The same approach
is used in [14] and [15].

42

4.2.5 State space division

All three presented approaches were implemented. However, the reassign-
ment strategy does not behave well because of big overhead. As the results
are definitely not promising the reassignment strategy will not be supported
in the next versions. It will allow us to send the states among machines
directly, not through server.

4.3 Architecture description

The server component obtains an architecture description as a string from
the console. JavaCC generated parser is used to create the parse trees of all
protocols involved in the architecture. The parser also fills the EventTable,
which holds a translation table between event codes used in the rest of the
tool and the textual representation. Each protocol is represented by the
ProtocolKeeper. This class is used to manage different representations of a
protocol.

4.3.1 Parse trees

The parse tree represents the string exactly including all abbreviations and
and unnecessary brackets to be able to print it out again. The nodes repre-
senting events remember event code assigned by the EventTable. Supported
operations over the parse tree include creating of the inverted protocol, print-
ing the protocol out, printing the annotated version of the protocol and the
construction of FSM. They are implemented using the visitor pattern [16].
The printing out of the annotated protocol is parameterized by the set of
parse tree nodes. The result string just contains marks before the nodes
from the given set.

4.3.2 Finite state machines

When the parse tree is created it is transformed into FSM. It can be non-
deterministic. The transformation is done in bottom up manner. Creation
of FSM representing an elementary behavior protocol consisting of just one
event is trivial. A special method exists for each operator. It takes the
number of state machines each representing a subtree of one child. Result of
this method is FSM corresponding to the whole subtree. The result of the
whole operation is also stored in the ProtocolKeeper.

This FSM representation still contains references to the parse tree to keep
information needed for printing out of annotated protocols. It is also capable

43

to keep non-deterministic FSM. It is not used for accepting of words, but it
is used only for the construction of other FSM representation, which is used
for distribution to the clients. That is why we don’t need fast look up among
the edges leaving a state. All edges leaving the state can be stored together
in a set although they are labeled with different labels.

The FSM representation suitable for distribution is called SimpleFlyFSM.
It does not support for non-determinism. When the first version of FSM
created from the parse tree is already deterministic, we can immediately
create a corresponding SimpleFlyFSM. If it fails, it means that original FSM
is non-deterministic and the transformation into a deterministic one must be
performed at first. At this point, the minimal version of automaton could be
also created. It could decrease memory requirements.

So, at the end of this stage, we have three or four different representations
of the protocol stored in the ProtocolKeeper. But, we don’t need them all
any more. The intermediate representations can be forgotten, we keep just
the parse tree and the SimpleFlyFSM. To enable the printing out of annotated
protocols, we must also remember a function that assigns to each state of
SimpleFlyFSM a set of nodes from the parse tree it corresponds to. We need
a set, because of possible non-determinism hidden in the deterministic states
of the SimpleFlyFSM. The function is represented by a map from integer to
a set of parse tree nodes. If the annotated protocols feature is off, it is not
created.

4.3.3 FlyFSM

The FlyFSM is a representation of FSM, which does not keep its states explic-
itly in the memory. It provides methods for state neighbours enumeration
and for look up using the edge label, but instead of reading it from the
memory it always computes it. It is always implementation of the consent
operator, which somehow uses the data from explicit FSMs stored in the
SimpleFlyFSM. When the server computes a SimpleFlyFSM for each proto-
col of the architecture, it uses it to construct FlyFSM. This FlyFSM is then
distributed to the clients.

SimpleFlyFSM

The SimpleFlyFSM is a representation of FSM designed for easy distribution
by parts using the Java serialization. The states are identified by integer
numbers. These identifiers correspond to the DFS ordering. There are two
state representations available. They differ in implementation of the output
edges. One uses a sparse array indexed by the edge label, while in the other

44

case the binary search in a dense array is used. The first one is fast, the
second one is small, and neither supports non-determinism.

The target of an edge is always represented by an integer identifier, not
by a Java reference. It enables us to easily split this automaton and send
each part to a different machine using the Java serialization.

The consent operator

There are two implementations of the consent operator — a binary and a
n-ary version. The binary version takes two operands. The first one is always
SimpleFlyFSM while the second can be also SimpleFlyFSM or binary consent.
The whole architecture is described by binary tree — see Fig 4.1(a). The
binary consent is parametrized by the set of synchronized events.

The n-ary version uses all SimpleFlyFSM of the architecture directly. We
have two implementations, because the binary version is simpler to imple-
ment, while the n-ary version is faster. The binary version is kept because it
can be modified much easily in order to implement new features in future.

(a) Binary consent (b) n-ary consent

Figure 4.1:

State identifiers

A state of FlyFSM is identified by a vector of integers as described in 3.3.2.
However, the memory efficient representation from the equation 3.1 is usable
as long as the Ideff fits into 64 bits — the Java long type. If it does not
fit, we have to use a big integer implementation. But the inversion of the
original formula contains division and modulo. These operations take a lot
of time using software implementation of big integers. To avoid this, all

45

multiplications in the formula are replaced by bit shifting. In consequence, we
can multiply (or divide) only by powers of two. We can use a bigger basei than
necessary. Doing this, we get a representation, which is slightly less effective.
At worst case we can lose one bit for each protocol used in the architecture.
However, this implementation is as fast as a naive implementation using long
and much faster than a naive implementation using Java BigInteger.

46

Chapter 5

Evaluation

This chapter presents results achieved by implementation described in the
previous chapter. The evaluation has two parts. First, we compare local
version of the checker with PTA based checker. Then, the scalability of the
distributed version is presented.

5.1 The architectures used for evaluation

5.1.1 Artificial

This architecture contains few protocols including only the sequential opera-
tor and the parallel operator. Parallel operators are always on the top level.
Because the architecture is quite simple, we can smoothly change the amount
of parallelism represented by the parallel operator and the consent operator.

Such an architecture contains many edges and can be seen as the worst
case of the task from communication overhead point of view. On the other
side, we can slightly modify the architecture using the alternative operator
on the top most level to split the state space into two parts of equal sizes.
Such a state space can be divided among two machines with only one edge
crossing the machine boundary. This can be seen as the best case.

The preprocessing stage of the artifical architectures is very short so it
does not affect the scaling results.

5.1.2 Real-world

We are really interested in protocols describing ’real’ applications. Such a
set of protocols was already developed by DSGR at Charles University as a
case study of behavior protocols [17],[18]. I took the architecture descriptions
from this project, removed atomic actions, which are not supported by the

47

distributed checker and changed them a little bit to comply with the grammar
of the distributed checker input file.

5.2 The local version vs. PTA

Here, we compare the local version of the distributed checker with the pre-
vious PTA based checker. We use only the protocols from the case study.
They can be found on the thesis CD.

Architecture States Time[s] Speed[states/s]
FreqDB FlyTicketdb 15 0,25 60
token 24 0,39 61,86
flyticketdatabase 32 0,49 65,71
arbitrator dchp frames 1080 0,82 1315,47
Dhcp other frames 3456 2,44 1414,08
ipaddressmanager transientipdb 71969 64,56 1114,83
ipaddressmanager timer 654350 399,86 1636,45
cardcenter accountdb token 131798 124,81 1055,96
arbitrator 1703125 758,8 2244,51
toplevel frames 1220856 1111,65 1098,24
arbitrator vs frame 7822302 8633,12 906,08

Table 5.1: Results of the PTA-based checker

Architecture States Time[s] Speed[states/s]
FreqDB FlyTicketdb 14 0,51 27,34
token 24 1,62 14,86
flyticketdatabase 51 0,3 170,57
arbitrator dchp frames 1683 1,23 1366,07
Dhcp other frames 3069 1,5 2052,84
ipaddressmanager transientipdb 7456 0,68 10900,58
ipaddressmanager timer 26613 1,32 20207,29
cardcenter accountdb token 179715 5,84 30799,49
arbitrator 1000000 64,98 15388,88
toplevel frames 1903278 92,8 20510,57
arbitrator vs frame 4096170 128,75 31814,91

Table 5.2: Results of the local version of the distributed checker

48

The distributed checker was run with the default settings. The infinite
activity detection of the PTA-based checker was turned off as the distributed
checker does not support it. The tests were run on a computer containing
AMD Opteron(tm) Processor 144 on 1800 MHz and 1 GB RAM.

From the results, we can see that the PTA-based checker is much slower.
The distributed checker is significantly faster even without distribution.

Another interesting observation is that the same architecture is typically
modeled by a smaller automaton in case of distributed checker. The rea-
son is that both checkers uses a different translation from the parse tree of
regular expression to FSM. You can see examples of translation of elemen-
tary protocols in the Appendix A. This translation influences the resulting
number of states a lot. Another reason of the difference can be hidden in
the complicated function used to create the bit-efficient representation in the
PTA-based checker.

5.3 Scaling

There are only three architecture descriptions large enough for distribution
in the case study. We add two ’artificial’ architectures — big.bp and big5.bp.
The first one is a parallel composition of sequentially connected events and
the other one contains two parallel compositions connected by the alterna-
tive operator. The input files are in the testfiles directory on the CD
accompanying the thesis.

All tests were run on the same computers as the local version in the previ-
ous section. The measured times are the average values from four attempts.
The number of crossing edges is taken from the run which is closest to the
average time.

Static Dynamic Reassign
Clients Time [s] CE1 Time [s] CE Time [s] CE
1 73 0 72 21 73 0
2 41 413036 46 842673 70 404271
3 31 808496 42 1650099 69 769915
4 26 1195168 59 2414669 66 924389
5 30 1584037 67 2918980 93 796104

Table 5.3: Results for big.bp — 4826809 states

1Edges crossing machine boundary

49

In table 5.3 you can see the results for the big.bp architecture. This kind
of task is not suitable for dynamic assignment. It is obvious, because all
states of cartesian product are reachable in this case. Dynamic assignment
helps us to better approximate reachable areas, but it is not needed in this
case. It just increases the number of crossing edges. The same arguments
hold for the reassignment.

Static Dynamic Reassign
Clients Time [s] CE Time [s] CE Time [s] CE
1 152 0 147 99 141 0
2 71 8788 76 781474 78 208443
3 52 830466 57 1544727 126 482913
4 39 834860 62 2340955 132 648320
5 35 1619189 70 2434665 131 465561

Table 5.4: Results for big5.bp — 9660209 states

The table 5.4 contains results for the architecture description, which can
be staticaly distributed among odd number of machines very well. The reason
is that its state space consist of two big parts connected just by one edge.

Artificial architectures have the advantage that they comply with the
presumption about sizes of protocol automatons. The splitting of state space
to the parts of equal volume brings uniform distribution of reachable states
to the machines.

Now, let us move to the architectures from the case study. In these cases
the server side construction of protocol automatons becomes relevant part of
overall time required for the checking.

Static Dynamic Reassign
Clients Time [s] CE Time [s] CE Time [s] CE
1 70 0 62 88 61 0
2 56 213864 63 384504 85 443885
3 54 402073 59 584701 107 528896
4 59 553297 71 714216 123 580776
5 60 626594 66 742194 140 453071

Table 5.5: Results for arbitrator.bp — The whole automaton has 1000000
states. The times include the creation of protocol automatons by the server.
It takes 26 seconds in this case.

50

The architecture description arbitrator.bp definitely does not comply
our presumption. It contains one huge protocol translated into an automaton
with over 700000 states. It is combined with a tinny protocol represented by
5 states automaton.

Static Dynamic Reassign
Clients Time [s] CE Time [s] CE Time [s] CE
1 96 0 88 0 86 0
2 81 255999 92 182333 137 90981
3 72 236535 81 627584 171 118003
4 72 445755 101 911379 196 116416
5 72 370471 100 845478 220 114829

Table 5.6: Results for toplevel frames.bp — 1903278 states. The protocol
automatons creation takes 35 seconds.

Static Dynamic Reassign
Clients Time [s] CE Time [s] CE Time [s] CE
1 145 0 145 0 134 0
2 107 94750 119 155388 241 234198
3 136 254616 117 334391 253 312401
4 108 248344 117 825514 290 381349
5 106 835574 103 923171 307 407491

Table 5.7: Results for arbitrator vs frame.bp — 4096170 states. The protocol
automatons creation takes 35 seconds.

The simplest approach for splitting the state space gives surprisingly the
best results. The reassignment strategy is definitely the worst one. Recall
that we are sending all edges that are crossing machine boundary through the
server in all cases. We are doing this just because of support for reassignment.
If we stoped this support it would bring improvements in other cases. At
this point, I must say that the sending of some states through the server was
not a bottle-neck during the presented tests. The reason is that we are using
relativelly small number of clients. However, there is still overhead caused
by sending of the states through the server which can be avoided by sending
the states directly to the clients. The server becomes bottle neck when we
use more clients — e.g. ten. This will be also removed by direct sending.

The memory utilization depends on the assignment of state space parts
to the particular machines. If the number of reachable states assigned to

51

the machines are comparable then we are able to use all memory. However,
if the assignment is bad and an arbitrary machine uses all its memory, the
checking is terminated without result.

To summarize the results, an significant speedup was achieved even with-
out distribution. The distribution brings us other improvement in some cases,
but not always.

52

Chapter 6

Related work

All model checkers suffers from the state space explosion and the task dis-
tribution can help. The distributed version of the explicit Murϕ verifier was
presented in [15]. In this work, random assignment of particular states to
available machines is used. Although the communication criteria is utterly
omitted good results are presented. It is caused mainly by the fact that com-
putation of neighbour states in Murϕ is very demanding. In this work, it is
proved that the random assignment provides uniform distribution of work-
load if the number of states is much higher than the number of machines.

In [14], a distributed version of the SPIN model checker is described. Its
main goal is to employ all memory of the available computers, not necesarily
to have the result sooner. As the enumeration of state neighbours is quite
fast in SPIN, the completely random assignment does not give good results.
The authors propose another assignment. As it was explained in the pre-
vious chapter, SPIN state identifier is a vector. Each component identifies
a state of one process. The assignment function uses only one component
of the vector. The machine boundary is crossed only when the state of one
particular process is changed. But there is typically many processes in the
system and each transition means a change of only one or two of them. This
way, lower communication requirements are achieved. This approach is sim-
ilar to static assignment used in this work. The difference is that while the
distributed SPIN checker creates ’slices’ of the state space of width equal to
one, we are using much wider ones. On the other side, a randomness of the
slice assignment brings the uniform work distribution.

The problem with reporting error traces is solved by passing a list of
events together with the transmitted state identifier. This list contains states
that occur on the path from the initial state to the state, which contains the
error.

Both works are not able to check properties that need data from more than

53

one state. They can check assertions, reachability, deadlocks and invariants
for which information contained in one state is enough. An example of such
property, which is not observable from one state, is infinite activity or LTL
formulas.

The parallel checking of LTL formulas is more complicated. The problem
is that in a distributed environment the order of the visited nodes is not
strictly given by the traversal strategy used. It depends on different speeds
of the machines and communication delays. It is non-deterministic. In [19],
the approach from [14] is improved in such way that information about strict
DFS ordering is transferred together with the states. Another approach
from [20] uses cycle detection based on the BFS traversal. The machines are
synchronized when all states of the same depth are visited. The assignment
of the states to the machines is still the same as in [14].

There are also works on paralelizing of the symbolic BDD based model
checkers. In [21], partitioning of the BDD transition function and the BDD
set is presented. The state space is divided into slices this way. The computa-
tion on a single slice of a set usually requires less memory than computation
on the whole set. The set of newly achieved states is computed in parallel.
The machines are synchronized at each level and exchange the states that
were not generated by machine owning the slice it belongs to. At this mo-
ment, the memory requirements are compared and the state space can be
resliced.

However, the BDD approach is not very suitable for model-checking of be-
havior protocols. The state of each component consists only from its program
counter. It typically depends on program counters of other components. The
BDD-based checking is not suitable for systems containing many dependent
variables [22]. The model described by behavior protocols typically does not
have other than dependent variables.

54

Chapter 7

Conclusion

A new approach for behavior protocols checking was presented. It better
suits to distributed environment than the PTA-based checker. Moreover, the
tests show that it behaves better even in the non-distributed case.

A prototype implementation used to compare different approaches for the
state space division was created. This implementation achieves better results
than the old PTA-based implementation of the checker when running on a
single machine. The distribution brings other improvement in many cases,
but not always.

There are still many open issues related to this work. First the implemen-
tation should be changed to support only the promissing approaches. This
should improve scalability.

Another big area for future work are state space division heuristics. An
other important thing is extending this checker to be able to check more
properties — namely the infinity activity or LTL formulas. The models
accepted by the previous PTA-based checker also support synchronization.
Some kind of synchronization, not necessarily the same atomic actions as
these in the PTA-based checker, would be useful.

The checker implementation could be also improved in many ways. Min-
imization of protocol FSMs could decrease amount of required memory. The
server process could be managed using Java JMX.

55

Appendix A

FSM representation of behavior

protocols

(a) Protocol
!i.m^ consisting
of one event

(b) Protocol !i.m using
method call abbreviation.

(c) Sequential operator -
!i.m;?j.n

(d) Repetition operator -
(!i.m;?j.n)*

(e) Alternative operator -
!i.m+?j.n

(f) And-parallel operator -
!i.m|!i.n

Figure A.1: Simple behavior protocols

56

(a) Or-parallel operator !i.m||!i.n

(b) Protocol (!i.m)*|(!i.n)*

Figure A.2: Simple behavior protocols

57

Appendix B

Input file grammar

<ARCHITECTURE> ::= <PROTOCOL>

| <ARCHITECTURE> <BINDING> <PROTOCOL>

| <ARCHITECTURE> <BINDING>

<PROTOCOL> ::= <PROTOCOL_EXPR>

| "frame:" <PROTOCOL_EXPR>

<BINDING> ::= "sync{"<EVENT_LIST> "}"

| "sync{}"

<EVENT_LIST> ::= <EVENT>

| <BINDING> "," <EVENT>

<EVENT> ::= "?" <METHOD_NAME> "^"

| "!" <METHOD_NAME> "^"

| "?" <METHOD_NAME> "$"

| "!" <METHOD_NAME> "$"

| "?" <METHOD_NAME>

| "!" <METHOD_NAME>

| "?" <METHOD_NAME> "{" <PROTOCOL_EXPR> "}"

| "!" <METHOD_NAME> "{" <PROTOCOL_EXPR> "}"

<METHOD_NAME> ::= <IDENTIFIER> "." <IDENTIFIER>

<PROTOCOL_EXPR> ::= <PROTOCOL_EXPR> "+" <SEQUENCE>

| <SEQUENCE>

58

<SEQUENCE> ::= <SEQUENCE> ";" <AND_PARALLEL>

| <AND_PARALLEL>

<AND_PARALLEL> ::= <AND_PARALLEL> "|" <OR_PARALLEL>

| <OR_PARALLEL>

<OR_PARALLEL> ::= <OR_PARALLEL> "||" <REPETITION>

| <REPETITION>

<REPETITION> ::= <BRACKET> "*"

| <BRACKET>

<BRACKET> ::= "(" <PROTOCOL_EXPR> ")"

| <EVENT>

59

Appendix C

Edge and node density

Figures C.1 - C.4 show the number of edges coming from the one part of
the the FSM to other. The left image is the graph of EP (l) while the right
image always shows CEP (l). These functions are defined in Section 3.7.
The heuristic proposed in that Section depends on the close relation between
these functions. The following graphs show that there is no obvious relation.
The data comes from toplevel frames.bp. The other architectures from
the case study look similar.

 0

 50

 100

 150

 200

 250

 300

 0 50 100 150 200 250 300

EdgesInProtocol

(a)

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 90000

 0 50 100 150 200 250 300

RealEdges

(b)

Figure C.1: FSM of frame protocol

60

 0

 50000

 100000

 150000

 200000

 250000

 300000

 350000

 0 100000 200000 300000 400000 500000 600000 700000 800000

EdgesInProtocol

(a)

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 90000

 100000

 0 100000 200000 300000 400000 500000 600000 700000 800000

RealEdges

(b)

Figure C.2: Protocol FSM of Arbitrator component

 0

 1000

 2000

 3000

 4000

 5000

 6000

 0 1000 2000 3000 4000 5000 6000 7000 8000

EdgesInProtocol

(a)

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 0 1000 2000 3000 4000 5000 6000 7000 8000

RealEdges

(b)

Figure C.3: Frame protocol of composite component containing Token, Card-
Center and AccountDB components

 0

 20

 40

 60

 80

 100

 120

 140

 160

 0 50 100 150 200 250

EdgesInProtocol

(a)

 0

 20000

 40000

 60000

 80000

 100000

 120000

 0 50 100 150 200 250

RealEdges

(b)

Figure C.4: Protocol FSM of Firewall component

61

 0

 50000

 100000

 150000

 200000

 250000

 0 50 100 150 200 250 300

(a) Usage of frame protocol states

 0

 100

 200

 300

 400

 500

 600

 700

 800

 0 100000 200000 300000 400000 500000 600000 700000 800000

(b) Usage of arbitrator states

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 0 1000 2000 3000 4000 5000 6000 7000 8000

(c) Usage of composite component states

 0

 100000

 200000

 300000

 400000

 500000

 600000

 700000

 800000

 0 0.5 1 1.5 2 2.5 3 3.5 4

(d) Usage of FrequentFlyerDatabase states

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 0 50 100 150 200 250

(e) Usage of Firewall states

Figure C.5: These graphs capture how many times was a particular state of
the protocol FSM involved in the state from the resultant FSM. The same
architecture as in previous case was used. These graphs are useful to value
particular division from the point of memory utilization. The integral over
the parts assigned to different machines should be similar.

62

Bibliography

[1] F. Plasil and S. Visnovsky. Behavior Protocols for Software Components.
IEEE Transactions on Software Engineering, 28(11), Nov 2002.

[2] M. Mach, F. Plasil, and J. Kofron. Behavior Protocol Verification:
Fighting State Explosion. International Journal of Computer and In-
formation Science, 6(1), Mar 2005.

[3] SOFA: Software Appliances - component framework
http://nenya.ms.mff.cuni.cz.

[4] SPIN model checker - http://www.spinroot.com.

[5] I. Beer, S. Ben-David, C. Eisner, and A. Landver. Rulebase: An
industry-oriented formal verification tool. In 33rd Design Automation
Conference, page 655–660, 1996.

[6] Java PathFinder - http://javapathfinder.sourceforge.net.

[7] Shoham Ben-David, Cindy Eisner, Daniel Geist, and Yaron Wolfsthal.
Model checking at IBM. Verification and Testing Technologies in System
Design, 22(2), 2003.

[8] R. Sethi A. V. Aho and J. D. Ullman. Compilers: Principles, Tech-
niques, and Tools. Addison-Wesley, 1988.

[9] J. Kofron. Enhancing Behavior Protocols with Atomic Actions. Tech-
nical Report 2006/2, Dep. of SW Engineering, Charles University, Jan
2006.

[10] O. Sery. Model Checking and Reduction of Behavior Protocols, Master
Thesis, Charles University in Prague, May 2006.

[11] P. Parizek, F. Plasil, and J. Kofron. Model Checking of Software Com-
ponents: Combining Java PathFinder and Behavior Protocol Model

63

Checker. In Proceedings of 30th IEEE/NASA Software Engineering
Workshop (SEW-30), Apr 2006.

[12] J. Adamek and F. Plasil. Behavior Protocols: Tolerating Faulty Archi-
tectures and Supporting Dynamic Updates. Technical Report 2002/10,
Department of Computer Science, University of New Hampshire, Oct
2006.

[13] R. Dechter. Constraint Processing. Morgan Kaufmann, 2003.

[14] Flavio Lerda and Riccardo Sisto. Distributed-memory model checking
with SPIN. In Proc. of the 5th International SPIN Workshop, volume
1680 of LNCS. Springer-Verlag, 1999.

[15] Ulrich Stern and David L. Dill. Parallelizing the Murϕ Verifier. In
Computer Aided Verification, pages 256–278, 1997.

[16] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. De-
sign Patterns,Elements of Reusable Object-Oriented Software.

[17] P. Jezek, J. Kofron, and F. Plasil. Model Checking of Component Be-
havior Specification: A Real Life Experience. In Proceedings of Interna-
tional Workshop on Formal Aspects of Component Software (FACS’05),
Macao, Oct 2005.

[18] J. Adamek, T. Bures, P. Jezek, J. Kofron, V. Mencl, P. Parizek, and
F. Plasil. Real-life Behavior Specification of Software Components, Pre-
sented at the 11th EMEA Academic Forum, Dublin, Ireland, May 2006.

[19] J. Barnat, L. Brim, and J. Stř́ıbrná. Distributed LTL Model-Checking in
SPIN. In Proceedings of the 8th International SPIN Workshop on Model
Checking of Software, volume 2057 of LNCS, pages 200–216. Springer,
2001.

[20] J. Barnat, L. Brim, and J. Chaloupka. Parallel Breadth-First Search
LTL Model-Checking. In 18th IEEE International Conference on Auto-
mated Software Engineering (ASE’03), pages 106–115. IEEE Computer
Society, Oct. 2003.

[21] T. Heyman, D. Geist, O. Grumberg, and A. Schuster. Achieving scal-
ability in parallel reachability analysis of very large circuits. In Proc.
of the 12th International Conference on Computer Aided Verification.
Springer-Verlag, June 2000.

64

[22] Alan J. Hu and David L. Dill. Reducing BDD size by exploiting func-
tional dependencies. In Design Automation Conference, pages 266–271,
1993.

65

