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ABSTRACT

The problem this paper addresses is that an architecture

formed of software components can contain composition

errors (introduced, for instance, as a result of the choice of

a framework’s parameters). The title “Erroneous architecture

is a relative concept” is to emphasize that whether a

composition error occurs in an architecture depends on the

way the architecture is used in its environment. An

important  issue is finding a way to possibly statically verify

that, for a given setup containing the architecture, no

composition errors can occur in any run. The contribution of

the paper is bringing an evidence that this can be done by

employing behavior protocols and their consent operator.
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1. Introduction and Motivation

1.1. Software Component Background

In addition to the industrial component models [1, 2],

which operate with simple, object-granularity level

components, there are a number of advanced component

models [3, 4], all based on a very similar idea: A component

features interfaces, each of them being either provides or

requires. (Terminology slightly differs, we stick with our

SOFA[5] component model inspired by Darwin [6]). A

provides interface denotes the services offered by a

component. It consists of a set of provided methods; this set

determines the type of the interface. Provides interfaces are

very similar to interfaces in Java. A requires interface R

expresses the fact that a component needs to call methods on

a provides interface P of another component to work

properly (i.e., a requires interface is an abstraction of a

reference to another interface). Again, it consists of a set of

required methods determining the interface type. A requires

interface R has to be connected to a provides interface of the

same type. This connection is realized by  an interface tie !

provision of a (possibly remote) reference in the

implementation view.

Many component models allow for component nesting to

support top-down design and refinement. Figure 1 shows a

composed component (FORECAST), providing the weather

forecast service. It consists of three subcomponents

(SWITCH, CACHE, and ENGINE). The small dark/white

boxes denote provides/requires interfaces. The caption of an

interface shows the name of the component that features the

interface, local name of the interface and methods which are

provided/required. For instance, CACHE:C is a provides

interface of CACHE, its local name is C and contains the get
and put methods.

A tie between a requires interface and a provides

interface is called binding (e.g. SWITCH:C->CACHE:C in

Fig. 1). If nested components are considered, a tie can also

have the form of delegation (a call on a provides interface of

the parent component is forwarded to a provides interface of

a subcomponent), e.g. FORECAST:F1->SWITCH:F1 in Fig.

1, or subsuming (a call on a requires interface of a

subcomponent is forwarded to a requires interface of the

parent component),  not employed in the setting in Fig. 1.

1.2. Running example - settings

We will illustrate all the concepts used in this paper on

the example from Fig.1. As mentioned in Sect 1.1, the

FORECAST component provides weather forecast for a given

region at a given time (the region and time are passed as

parameters to the query method from the FORECAST:F1 or

the FORECAST:F2 interfaces). The functionality of

FORECAST:F1 and FORECAST:F2 is the same, the interface

is duplicated to provide the service to two clients – we do
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Figure 1: A composed component (FORECAST), providing the

weather forecast service, consisting of three subcomponents

(CACHE, SWITCH, and ENGINE)
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Figure 2: a) the frame of the FORECAST component; b) the

architecture of the FORECAST component

not consider more clients to keep the example simple; for

the same reason, we assume that each of those interfaces can

be used by at most one thread at a time.

A forecast is the result of a time-demanding computation

stemming from a complex mathematical model. As the

forecast for a particular time and region can be requested

repeatedly, it makes sense to cache the results of

computations. Therefore, when query is called on

FORECAST:F1 or FORECAST:F2 (and the call is delegated

to SWITCH:F1 or SWITCH:F2 respectively), the SWITCH
component first asks CACHE, whether the forecast for given

parameters has been computed recently (the get method).

If this is the case, CACHE returns the result immediately,

which is consequently returned to the caller of query. If the

requested forecast has not been computed yet, SWITCH calls

compute on  ENGINE:E to get one, stores it into CACHE

(put) and finally returns it to the caller of query.

Now, let us focus on reentrance of the subcomponents.

As SWITCH just “forwards” the calls and makes a simple

decisions based on the answers of CACHE, we will assume

that it is reentrant, i.e. the methods on SWITCH:F1 and

SWITCH:F2  can be called by two threads simultaneously

(one thread on each of these interfaces) without any negative

impact on its functionality.

Since ENGINE does a time-consuming numerical

computation, calling the compute method by several

threads in parallel is feasible. Whether this is really possible

depends on the way ENGINE manipulates its internal data

structures. However, the reentrancy of ENGINE should not

be understood as an implementation detail, as it influences

reentrancy of FORECAST: 

1) If ENGINE is reentrant (two threads can call the

methods on ENGINE:E concurrently), FORECAST is

reentrant as well (because SWITCH and CACHE are also

reentrant).

2) If ENGINE is not reentrant, concurrent usage of

ENGINE:E results in a corruption of its internal data

structures. Note that calling query on FORECAST:F1 and

FORECAST:F1 simultaneously can eventually result in a

concurrent call of compute on ENGINE:E (in case none of

the two requested forecasts have been previously

computed). Therefore FORECAST is also not reentrant.

1.3. Software Architectures and Frameworks

The setup of cooperating components from Fig.1 is ready

to communicate with an environment on its external

connections (via  ties to FORECAST:F1, FORECAST:F2). As

an aside, since we have considered alternatives of the

component ENGINE - a final setup can be considered as an

instance of a component-based framework where ENGINE
is a parameter. A particular choice of such a parameter can

influence  the way some other components in the setup need

to communicate, which consequently can be OK for some

environments but for others can mean an erroneous

behavior in the setup. Obviously, a behavior specification

could help analyze the problem. 

To identify at which level and how behavior is to be

specified it is advantageous to recall the key two approaches

to component employment:

(a) In top-down design/refinement from scratch, the

required functionality (like weather forecast) is first viewed

by the environment as a black box component, frame in our

terminology (Fig.2a). Later, by refinement, the component’s

architecture is elaborated (Fig.2b), and, eventually, setup is

finalized. In [7] we showed that behavior protocols can be

specified for both frame and architecture and their

compliance verified by a tool.

(b) When reuse is considered, a potentially useful

framework is identified and its parameters determined. The

resulting architecture is than placed into the required frame,

which finally yields a setup. An intuition-based bottom line

is that  (i) an architecture can serve in different frames (be

part of different setups), (ii) the choice of actual parameters

in a framework can cause communication errors in the

resulting architecture. In [8] we showed that composition

errors in an architecture can be statically detected assuming

the behavior of its subcomponents is specified by means of

behavior protocols.



1.4. Goal and Structure of the Paper

The message of Sect. 1.2 and 1.3 is twofold:

- it is beneficial to specify behavior,

- even though there are communication errors in an

architecture, they can be avoided in a particular environment

(abstracted as a frame).

From this perspective, the problem this paper focuses on

reads: An architecture can contain composition errors (e.g.,

as the result of a choice of a framework’s parameters).

Whether a composition error occurs in a run of this

architecture depends on the way the architecture is used in

its environment, i.e. erroneous architecture is a relative

concept. The key issue is how to statically verify that, for a

given setup containing the architecture, no composition

errors can occur in any run. The goal is to show that this is

possible by employing  behavior protocols and their consent

operator in particular. The rest of the paper is structured as

follows: Section 2 overviews the key concepts of behavior

protocols, while Sect.3 presents the key contribution - shows

how to check whether an architecture contains composition

errors in a model environment. Related work is discussed in

Sect.4; Sect.5 provides a conclusion and draws a picture of

future work.

2. Behavior Protocols
2.1. Basics

 To analyze the behavior of components and frameworks, a

formal specification language has to be employed. In this

paper, we use behavior protocols [7, 8, 9], which were

developed as a part of our SOFA component model [5]. As

discussed in [7], behavior protocols reminding regular

expressions are more readable than a process algebra’s

notation, and their expressive power is strong enough to

reasonably approximate behavior of components. In contrast

to CCS [10], they always lead to finite state spaces and the

compliance/equivalence relations are decidable.

A key concept behind the behavior protocols is an event

– an abstraction of issuing a method call, a response to a

call, or a general event not associated with a particular

method. For instance, a call of compute on ENGINE:E is

captured as ENGINE:E.compute8, a response to the call as

ENGINE:E.compute9. Every event is emitted by a

component and accepted by another component.  Calling

compute via SWITCH:E is seen as emitting

SWITCH:E.compute8 by SWITCH (denoted as

!SWITCH:E.compute8 from the perspective of SWITCH);

at the same time ENGINE:E.compute8 is accepted by

ENGINE (denoted as ?ENGINE:E.compute8). Above

!SWITCH:E.compute8 and ?ENGINE:E.compute8 are

examples of  event tokens.

Event tokens are primitive operands of a behavior

protocol - an expression which specifies complex behavior

as the set of desired sequences of events (traces).   The

operators employed in behavior protocols are: “;” which

means  sequencing of the traces described by the operands;

“+” (alternative) stands for alternative choice of the traces,

“*” denotes finite repetition, and “|” means parallel

interleaving of the traces.

Let us illustrate the semantics of behavior protocols on

the behavior specification of the SWITCH. It repeatedly

accepts calls to the query method on both of its provides

interfaces (SWITCH:F1, SWITCH:F2) in parallel. On every

such call SWITCH  reacts by calling get on SWITCH:C to

find out whether the requested forecast is available in

CACHE; depending on the finding, SWITCH either responds

immediately to query, or calls compute on SWITCH:E.

After SWITCH accepts a response from compute on

SWITCH:E, it calls put on SWITCH:C to store the result into

CACHE, and finally responds on SWITCH:F1 or SWITCH:F2.

The behavior of SWITCH is specified by the following

protocol:

  ProtSWITCH =
  ( 
    ?SWITCH:F1.query { 
      !SWITCH:C.get ; 
      ( NULL + 
        (!SWITCH:E.compute ; !SWITCH:C.put)
      )
    } 
  )* |
  ( 
    ?SWITCH:F2.query { 
      !SWITCH:C.get ; 
      ( NULL + 
        (!SWITCH:E.compute ; !SWITCH:C.put)
      )
    } 
  )*

Here, !SWITCH:C.get is an example of (a few)

predefined useful abbreviations; it stands for

!SWITCH:C.get8 ; ?SWITCH:C.get9. The abbreviation
?SWITCH:F1.query { !SWITCH:C.get ; ( ... ) }
stands for ?SWITCH:F1.query8; !SWITCH:C.get ; (
... ) ; !SWITCH:F1.query9 – it describes acceptance

of a call to the SWITCH:F1.query method, including the

reactions specified by the protocol in braces, i.e.

!SWITCH:C.get ; ( ... ). Furthermore, NULL stands

for “empty” behavior (no event).

As ProtSWITCH specifies the events on the interfaces

forming only the frame of SWITCH, we call ProtSWITCH the

frame protocol of SWITCH. The frame protocol of CACHE is

much more simple:

  ProtCACHE = 
    (?CACHE:C.get + ?CACHE:C.put)* |
    (?CACHE:C.get + ?CACHE:C.put)*  

In ProtCACHE, we used the abbreviation  ?CACHE:C.get,

standing for ?CACHE:C.get8 ; !CACHE:C.get9. Finally,

we introduce the frame protocols for reentrant and non-

reentrant variants of ENGINE: 

  ProtENGINE-RE =
    ?ENGINE:E.compute* |
    ?ENGINE:E.compute*

  ProtENGINE-NR =
    ?ENGINE:E.compute*



2.2. Group Protocol and Consent Operator

By a behavior protocol, we can describe not only

behavior of a single component, but also behavior of a group

of components – we talk about a group protocol. 

Besides event tokens seen in Sect. 2.1 , we use Je for

internal events – events occurring on a binding in a group

G (here, the qualification e starts with the binding name

<IR-IP>, where IR, IP are the requires and the provides

interface, which are bound) – and error tokens to denote

composition errors. As they are described in [8] and [11] in

detail, we provide a brief overview only: A bad activity

(denotation ge) occurs when a component C emits an event

on its requires interface IR, which is bound to a provides

interface IP of another component D, and D is not able to

absorb the event on IP (demanded by its frame protocol).

No activity (denotation  gi) means that the components run

into a deadlock - no component in the group can emit an

event, but there is a component which has not reached its

final state. Divergence (denotation g%) denotes a situation

when the communication of the components in the group

never stops. Finally, unbound requires error (denotation

g've) occurs when a component C emits an event e on its

requires interface, which is unbound.

As the behavior of every component in a group is

specified separately by its frame protocol, we will

advantageously construct the group protocol from these

frame protocols via a repeated application of the consent

operator [8]. Technically, the consent operator (denoted as

L) composes the group protocols ProtG1, ProtG2  of two

(disjoint) component subgroups G1, G2 into the group

protocol Prot of the group G composed of G1 and G2.  In

addition to ProtG1, ProtG2, consent also takes the set S of

all the events on the ties between the groups G1, G2 (set of

synchronizing events) as a parameter: Prot = ProtG1 LS

ProtG2. As a frame protocol can be viewed as a group

protocol of a group consisting of a single component, the

group protocol of a non-trivial group G can be constructed

from frame protocols of the components in G step by step by

a repeated application of L.

Informally, the semantics of the consent operator can be

described by the following three rules: (1) The behavior of

G1 and G2 is synchronized on the events from S; (2) the

sequences of events, which are not in S, are arbitrarily

interleaved; (3) Composition errors are identified. The

formal definition of L can be found in the [8].

To show how L works, we provide the behavior of the

CACHE-SWITCH group:

ProtCACHE-SWITCH = ProtCACHE LS1 ProtSWITCH = 
  ( 
    ?SWITCH:F1.query { 
      J<SWITCH:C-CACHE:C>.get ; 
      ( NULL + 
        (!SWITCH:E.compute ; 
         J<SWITCH:C-CACHE:C>.put)
      )
    } 
  )* |
  ( 
    ?SWITCH:F2.query { 
      J<SWITCH:C-CACHE:C>.get ; 

      ( NULL + 
        (!SWITCH:E.compute ; 
         J<SWITCH:C-CACHE:C>.put)
      )
    } 
  )*

Here, the abbreviation J<SWITCH:C-CACHE:C>.put
stands for J<SWITCH:C-CACHE:C>.put8 ;
J<SWITCH:C-CACHE:C>.put9 and the set of

synchronizing events is

  S1 = { 
    <SWITCH:C-CACHE:C>.get8
    <SWITCH:C-CACHE:C>.get9
    <SWITCH:C-CACHE:C>.put8
    <SWITCH:C-CACHE:C>.put9
  }.

To demonstrate how consent identifies composition

errors, consider the composition 

ProtCACHE-SWITCH-ENR = ProtCACHE-SWITCH LS2 ProtENGINE-NR

Here, ProtENGINE-NR specifies the behavior of the non-

reentrant ENGINE and S2 is the set of synchronizing events

on the <SWITCH:E-ENGINE:E> binding. 

As ProtCACHE-SWITCH-ENR is relatively complex (however the

developer does not have to write it by hand, since it is

automatically generated), we show just one of the erroneous

traces described by ProtCACHE-SWITCH-ENR, (i.e. a trace which

ends by a composition error):

  ?SWITCH:F1.query8 ; 
  J<SWITCH:C-CACHE:C>.get8 ;
  J<SWITCH:C-CACHE:C>.get9 ;
  J<SWITCH:E-ENGINE:E>.compute8 ;
  ?SWITCH:F2.query8 ;
  J<SWITCH:C-CACHE:C>.get8 ;
  J<SWITCH:C-CACHE:C>.get9 ;
  g<SWITCH:E-ENGINE:E>.compute8

This trace corresponds to  the following behavior: query
on SWITCH:F1 is called, SWITCH reacts by a call to

SWITCH:C.get (which is immediately returned) and by a

call to SWITCH:E.compute. Then, a call to  query on

SWITCH:F2 is accepted, what results in another call of

SWITCH:C.get and a trial to call SWITCH:E.compute.

However, this results in a bad activity error (g<SWITCH:E-
ENGINE:E>.compute8), as the non-reentrant ENGINE is

not able to accept a request before it responded the previous

one.

All the erroneous traces described by ProtCACHE-SWITCH-ENR
are caused by parallel access to ENGINE:E, resulting from

simultaneous access to SWITCH:F1 and SWITCH:F2.

3. Checking Composition Errors in a Given

Environment
The architecture protocol ProtCACHE-SWITCH-ENR presented

above demonstrates an important fact: although the

architecture of FORECAST described by ProtCACHE-SWITCH-ENR
contains composition errors, those errors occur only in



special cases - specifically if two threads call query on

FORECAST:F1 and FORECAST:F2 in parallel. If we limited

the way the methods on the frame of FORECAST are called

accordingly - by a frame protocol - the composition errors

would not occur. To allow  query be called only

sequentially, we define the frame protocol of FORECAST as

follows:

  ProtFORECAST =
   (?FORECAST:F1.query + ?FORECAST:F2.query)*

To check whether the architecture contains composition

errors when used in the frame with the frame protocol

ProtFORECAST, we use the following technique: 

(1) We invert ProtFORECAST, simply by replacing all “?”

in the protocol by “!” and vice versa. This way, we obtain an

inverted frame protocol ProtFORECAST
-1, specifying behavior

of a model environment of FORECAST – i.e. behavior of a

hypothetical component, which, bound to all the interfaces

of FORECAST, behaves exactly how it anticipates.

(2) We compose  ProtCACHE-SWITCH-ENR with ProtFORECAST
-

1 to see how the architecture behaves in the model

environment, i.e. how it behaves when forming a setup with

the FORECAST frame:

ProtFORECAST
-1 =

(!FORECAST:F1.query + !FORECAST:F2.query)*
 
  Prot = ProtFORECAST

-1 LS3 ProtCACHE-SWITCH-ENR = 
  ( 
    J<FORECAST:F1-SWITCH:F1>.query { 
      J<SWITCH:C-CACHE:C>.get ; 
      ( NULL + 
        (J<SWITCH:E;ENGINE:E>.compute ; 
         J<SWITCH:C-CACHE:C>.put)
      )
    } +
    J<FORECAST:F2-SWITCH:F2>.query { 
      J<SWITCH:C-CACHE:C>.get ; 
      ( NULL + 
        (J<SWITCH:E-ENGINE:E>.compute ; 
         J<SWITCH:C-CACHE:C>.put)
       )
    } 
  )*

  S3 = {
    <FORECAST:F1-SWITCH:F1>.query8
    <FORECAST:F1-SWITCH:F1>.query9
    <FORECAST:F2-SWITCH:F2>.query8
    <FORECAST:F2-SWITCH:F2>.query9
  }.

We just remark that the abbreviation J<FORECAST:F1-
SWITCH:F1>.query{J<SWITCH:C-CACHE:C>.get
; ( . . . ) }  s t a n d s  f o r  J < F O R E C A S T : F 1 -
SWITCH:F1>.query8; J<SWITCH:C-CACHE:C>.get ;
(...) ; !J<FORECAST:F1-SWITCH:F1>.query9.

 In the resulting protocol Prot, there are no composition

errors; this complies with what we intuitively expected:

limiting the usage of FORECAST by a frame protocol

allowing only sequential calls of query would eliminate

composition errors. Obviously, the steps (1) and (2) give us

a general method to check whether a given architecture is

erroneous in the context of a given frame. 

4. Related work
Probably the closest to our work is [12] where the

problem of identifying a component's behavior errors in all

potential environments is addressed.  The approach is based

on an extension of classical model checking: Checking for

a given  property of a component yields one of the three

following results: (i) the property is preserved in all

environments; (ii) the property is violated in all

environments; (iii) all the environments in which the

property is satisfied are furnished.

In [13], the authors focus on testing interface

compatibility. Via interface automata, they check whether

there exists an environment in which a given interface

(module) works correctly.  In addition, they check the errors

caused by such method call chains which commence in the

component under consideration (e.g., recursive call of a non-

reentrant method). Note that, in our approach, the origin

(environment or component) is not important for error

identification. Contrary to both [12] and [13], choosing a

pragmatic view important in practice, we check whether a

given component behaves properly in a specific

environment; on the other hand it might be interesting to

investigate the existence of a “reasonable” environment.

The observation that the behavior of a component

depends on the way it interacts with its environment (and

vice versa) has been targeted by a number of researchers at

different levels of granularity, ranging from dynamically

modifiable Usage Policy for a single  CORBA object [14],

over mandatory calls [15] and the Alloy framework [16]

considering cooperation among multiple plugins. To our

knowledge, none of them comes up with the idea to

relativize the fact that a software architecture contains

communication errors. The authors of  “predictable

assembly” [17] envision a framework for reasoning on

assembling of components featuring with specific

properties. For behavior specification they consider CSP

[18] as an example.

5. Conclusion and future work
We have relativized the fact that a software architecture

containing communication errors is erroneous, by showing

that for a particular environment, the internal

communication errors can be avoided. This observation is

important for component architecture reuse. The key

instruments allowing to articulate the idea precisely are: (i)

The separation of the “frame” and architecture” abstractions

allowing the trick with inverted frame to represent a model

environment ; (ii) The concept of behavior protocols and, in

particular, their composition errors (we introduced in [1])

which capture possible erroneous behavior of cooperating

components. Unlike typical process algebras (e.g. CCS [10],

CSP [18]), composition errors reflect the inherent

asymmetry of a procedure call (caller takes the initiative,

while callee is passive). Currently, we are about to finish a

new version of protocol checker in our SOFA model and



also working on enhancing the Fractal ADL by behavior

protocols and making the checker available in Fractal. In the

near future we consider identifying “the largest” frame (or

“the best environment”), such that all the communication

errors in a given architecture would be avoided in it.
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