
Turbo DiSL: Partial Evaluation for High-level
Bytecode Instrumentation

Yudi Zheng1, Danilo Ansaloni2, Lukas Marek3, Andreas Sewe4, Walter Binder2,
Alex Villazón5, Petr Tuma3, Zhengwei Qi1, and Mira Mezini4

1 Shanghai Scalable Computing Lab, Shanghai Jiao Tong University, China
{zheng.yudi, qizhwei}@sjtu.edu.cn

2 University of Lugano, Switzerland
{danilo.ansaloni, walter.binder}@usi.ch

3 Faculty of Mathematics and Physics, Charles University, Czech Republic
{lukas.marek, petr.tuma}@d3s.mff.cuni.cz
4 Technische Universität Darmstadt, Germany

andreas.sewe@cased.de, mezini@informatik.tu-darmstadt.de
5 Universidad Privada Boliviana, Bolivia

avillazon@upb.edu

Abstract. Bytecode instrumentation is a key technique for the imple-
mentation of dynamic program analysis tools such as profilers and de-
buggers. Traditionally, bytecode instrumentation has been supported by
low-level bytecode engineering libraries that are difficult to use. Recently,
the domain-specific aspect language DiSL has been proposed to provide
high-level abstractions for the rapid development of efficient bytecode
instrumentations. While DiSL supports user-defined expressions that are
evaluated at weave-time, the DiSL programming model requires these
expressions to be implemented in separate classes, thus increasing code
size and impairing code readability and maintenance. In addition, the
DiSL weaver may produce a significant amount of dead code, which may
impair some optimizations performed by the runtime. In this paper we
introduce Turbo, a novel partial evaluator for DiSL, which processes the
generated instrumentation code, performs constant propagation, condi-
tional reduction, and pattern-based code simplification, and executes
pure methods at weave-time. With Turbo, it is often unnecessary to
wrap expressions for evaluation at weave-time in separate classes, thus
simplifying the programming model. We present Turbo’s partial evalua-
tion algorithm and illustrate its benefits with several case studies. We
evaluate the impact of Turbo on weave-time performance and on runtime
performance of the instrumented application.
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1 Introduction

Dynamic program analysis tools support numerous software engineering tasks,
including profiling, debugging, and reverse engineering. Prevailing techniques for



building dynamic analysis tools are based on low-level abstractions that make
tool development tedious, error-prone, and expensive. In the context of managed
languages, bytecode instrumentation is a widely used implementation technique
for dynamic analysis tools. For example, the Java Virtual Machine (JVM) supports
bytecode instrumentation through a native code interface and there are many
low-level libraries and frameworks for manipulating bytecode (e.g., ASM, BCEL,
gnu.bytecode, Javassist, Serp, ShrikeBT, Soot).

The domain-specific language DiSL [8] offers high-level abstractions to enable
rapid development of efficient dynamic analysis tools for the JVM. DiSL succeeds
in reconciling a high level of abstraction for tool development, expressiveness,
and efficiency of the resulting tools. DiSL is an aspect language based on a
pointcut/advice mechanism [7]. The benefit of using aspects for dynamic program
analysis stems from the convenient model offered by join points (representing
specific points in the execution of a program), pointcuts (denoting a set of join
points of interest), and advice (code to be executed whenever a join point of
interest is reached) [13]. A dynamic analysis aspect is concise and is easier to
define, tune and extend, compared to an equivalent implementation based on
low-level bytecode instrumentation techniques [8].

DiSL supports the weave-time evaluation of custom conditionals to decide
whether join points are woven, as long as these conditionals only depend on static
context information of the join point in question. This feature is key to avoiding
the repeated evaluation of such conditionals within advice at runtime. Alas, the
user needs to factor out the code that is to be evaluated at weave-time from
the advice. This complicates the DiSL programming model, as extra classes and
methods need to be introduced, and in some cases advice needs to be split up
into several pieces for which the weaving order has to be explicitly specified.

From the user’s point of view, it would be much more convenient to simply
write conditionals within advice code and rely on the DiSL weaver to optimize the
code and to move as much computation as possible from runtime to weave-time.
However, the DiSL weaver as presented previously [8] does not perform any
optimization of the woven advice. It may even generate a significant amount of
dead code that may hinder certain optimizations of the runtime.6

In this paper we introduce Turbo, a new partial evaluator that is plugged into
the DiSL weaver to optimize woven advice. Turbo performs constant propagation
and executes pure methods (i.e., methods that are free of side effects and compute
the same result when invoked multiple times with the same arguments) at weave-
time; it also removes dead code. Thanks to Turbo, the DiSL programmer usually
does not need to take care of factoring out expressions to be evaluated at weave-
time. Instead, such expressions are simply embedded in advice code. Turbo will
detect them and evaluate them at weave-time. In particular, Turbo guarantees
that conditionals that only depend on static context information will always be
evaluated at weave-time. Furthermore, the DiSL user may annotate methods

6 For example, the just-in-time compilers of some recent JVMs base inlining decisions
on the size of methods; if the weaver inserts a lot of dead code, the woven method
may not be eligible for inlining (a very effective compiler optimization) anymore.



that are pure such that Turbo may execute them at weave-time. Turbo is also
aware of many pure methods in the standard Java class library (e.g., methods in
java.lang.Integer or java.lang.String).

The original, scientific contributions of this paper are twofold:

1. We introduce Turbo, a partial evaluator for DiSL [8]. While partial evaluation
has been explored by others, Turbo is unique in simplifying the programming
model for the development of instrumentation-based dynamic analyses.

2. We present four case studies to illustrate the benefits of Turbo. With one
of these case studies, we evaluate the performance impact of Turbo both on
weave-time and on runtime of the woven application.

Section 2 gives an overview of DiSL. Section 3 introduces Turbo, our new
partial evaluator for DiSL. Section 4 illustrates how Turbo simplifies the DiSL
programming model in four case studies, before Sect. 5 explores the performance
impact of Turbo. Section 6 discusses related work and Sect. 7 concludes.

2 Background: DiSL Overview

Below we give an overview of some language constructs supported by DiSL,
limiting the discussion to the features used in this paper. We will show the DiSL
language constructs with concrete examples in Sect. 4. We refer the reader to
our comprehensive description of the DiSL language [8] for further information.

Join point model. DiSL has an open join point model in which any region of
bytecodes can be used as a join point. Pointcuts are expressed with markers
that select bytecode regions. DiSL provides an extensible library of such markers
including ones for selecting whole method bodies, basic blocks, single bytecodes,
and exception handlers. DiSL relies on guards to further restrict the join points
selected by a marker. Guards are predicate methods free of side-effects that are
executed at weave-time which have access to static context information.

Advice. Advice in DiSL are expressed in the form of code snippets. Snippets
are void methods that are instantiated by the weaver and that take annotations
indicating whether they are to be woven before or after a join point. In contrast
to mainstream AOP languages such as AspectJ, DiSL does not support around
advice (synthetic local variables [8] mitigate this limitation).

Context information. Snippets and guards have access to complete static context
information (i.e., static reflective join point information). To this end, snippets and
guards can take an arbitrary number of static context references as arguments.
Methods in static context classes return constants: primitive values, strings,
or class literals. DiSL provides an extensible library of static context classes.
Snippets have also access to complete dynamic context information, including
local variables and the operand stack. Dynamic context information is provided



through an interface type; snippets may take an argument of that type to access
dynamic context information.

When a snippet is selected to be woven at a join point, it is first instantiated
with respect to the context of the join point. The DiSL weaver first replaces
invocations of static context methods with the corresponding constants. That
is, static context method invocations in the snippet are pseudo-method calls
that are substituted with concrete constants. This step in the weaving process
introduces constants into the snippet; thus, the opportunity to optimize the
code with partial evaluation arises. Dynamic context method invocations in the
snippet are also pseudo-method calls that are replaced with bytecode sequences
to access local variables respectively to copy operands from the stack. The partial
evaluator Turbo described below is invoked after the removal of static context
method calls but before the removal of the dynamic context method calls.

3 Turbo: Partial Evaluator for DiSL

Turbo is a new on-the-fly partial evaluator integrated with the most recent
version of the DiSL weaver. If enabled, Turbo performs code optimizations
during the process of snippet instantiation. As discussed in Sect. 2, the DiSL
weaver instantiates snippets by replacing invocations of static context methods
with bytecodes that load the corresponding constants. Turbo can perform any
computation in snippets that depends only on constants and does not produce
any side effects at weave-time, thus avoiding repetitive runtime computations.
To reduce the weaving overhead, Turbo is designed to be simple but efficient,
aiming at simplifying the DiSL programming model.

Turbo partial evaluation is divided into three major steps that can be iterated
until no further optimization is possible: (1) constant propagation, (2) conditional
reduction, and (3) pattern-based code simplification. Turbo guarantees that
any intermediate result in the process of partial evaluation represents valid
bytecode without any change in the semantics with respect to the initial bytecode.
Consequently, it is easily possible to adjust the trade-off between the quality of
the partially evaluated bytecode and the time spent in optimization. For example,
the DiSL programmer may specify an upper limit on the number of iterations
performed by Turbo on each snippet, so as to limit the performance impact of
Turbo on weave-time.

If Turbo is iterated until no further optimizations are possible, it guarantees
that any bytecode within conditionals that are statically known to evaluate to
false (i.e., that only depend on computation with constants and on invocations
of pure methods) will be discarded. Such conditionals may even enclose snippet
code that results in bytecode which would fail the JVM’s bytecode verification
when instantiated; as the unreachable snippet code is discarded by Turbo, this
otherwise unverifiable bytecode can neither cause a weave-time error nor a
verification error when the instrumented class is linked. In Sect. 4.3 we will show
an example where this property of Turbo is useful, as it allows the programmer



to access potentially illegal positions on the operand stack when enclosed by an
appropriate static context information check.

Below we explain each step in the partial evaluation algorithm.

Constant propagation. The constant interpreter performs constant propagation
on the input snippet. It symbolically executes the bytecodes in the control-flow
graph by transforming an input frame (which represents the local variables and
the operand stack) into an output frame according to the bytecodes’ semantics.
For each bytecode, Turbo stores a frame containing the constant status of each
local variable and stack operand before executing it. If a bytecode is reachable
through multiple execution paths, Turbo merges the input frames. This operation
will replace a constant with a dedicated value indicating that the local variable
respectively stack operand is not constant or not the same constant for all merged
input frames. Our implementation of the constant interpreter is based on the
symbolic analyzer provided by ASM, a Java bytecode manipulation framework.
This is a sensible implementation choice, since DiSL’s weaver is itself ASM-based.

Besides symbolically executing bytecodes, Turbo also executes pure methods
at weave-time, thus enabling constant propagation across pure method calls. To
this end, the DiSL programmer must annotate such methods with @Pure and
ensure that the annotated methods indeed have no side effects and that their
output does not change for subsequent invocations with the same arguments.
Moreover, the methods have to be static with parameters of primitive (resp.
wrapper) types or strings. Out-of-the-box, Turbo also supports the removal of
calls to pure methods in the Java class library (e.g., string operations).

Figure 1a presents the algorithm of constant propagation implemented by
Turbo. It uses the auxiliary operations defined in Fig. 1b.

Conditional reduction. After constant propagation, some branch instructions can
be resolved to either if(true) or if(false). Turbo discards the branch that
is not taken and replaces the branch bytecode with a number of pop bytecodes
corresponding to the number of operands that would be consumed by the branch
bytecode. This code transformation ensures that the snippet code remains valid.
After all branch bytecodes have been processed, Turbo removes inaccessible basic
blocks from the control-flow graph.

Pattern-based code simplification. After each iteration, Turbo eliminates superflu-
ous code matching one of several different patterns, such as jumping to the next
instruction. Another code pattern optimized by Turbo is the sequence of pop
bytecodes introduced by conditional reduction. For each pop bytecode, Turbo
finds out the source bytecodes that push the operand. If all those bytecodes are
free of side effects, Turbo removes both the pop bytecode and its source bytecodes;
for each bytecode thus removed, Turbo inserts pop bytecodes corresponding to
the number of stack operands that would be consumed by the removed source
bytecode.



Input : An instruction list Φ
Output :∪instr∈Φinstr.frame
Initially :
Q := new Queue();
Q.enqueue(〈first instruction of Φ, new Frame()〉);

Iteration :
while Q 6= ∅ do
〈instr, input〉 := Q.dequeue();
changed := false;
if instr.frame = null then

instr.frame := input.clone();
changed := true;

else
for i := 0 to input.size− 1 do

if input.get(i) 6= instr.frame.get(i) then
instr.frame.set(i, ĉ);
changed := true;

end
if changed then

output := input.clone();
switch instruction pattern of instr do

case Load_constant: c→ dst, c ∈ C
output.set(dst, c);

case Data_transfer: src→ dst
v := input.get(src);
output.set(dst, v);

case Data_processing: (op)srcs→ dst
if ∀src ∈ srcs : input.get(src) ∈ C then

v := instr.process(∪src∈srcsinput.get(src));
output.set(dst, v);

else
output.set(dst, ĉ);

case Invocation: call f(srcs)→ dst
if ∀src ∈ srcs : input.get(src) ∈ C and f is pure then

v := instr.invoke(f,∪src∈srcsinput.get(src));
output.set(dst, v);

else
output.set(dst, ĉ);

otherwise if instr rewrites dst then output.set(dst, ĉ);
endsw
∀next ∈ instr.next : Q.enqueue(〈next, output〉);

end

Fig. 1a. Turbo’s algorithm for constant propagation. Auxiliary procedures used are
shown in Fig. 1b (Notation: C denotes the set of constants (e.g., 0, 1.0, null), ĉ 6∈ C
denotes a dedicated non-constant value.)



class Queue
dequeue(): Return and remove the first tuple from the queue;
enqueue(〈instruction, frame〉):
Insert the tuple 〈instruction, frame〉 at the end of the queue;

class Frame
Frame(): Initially all elements are assigned the non-constant value ĉ;
clone(): Return a copy of this frame;
get(position): Return the element at the specified position in the frame;
set(position, value):
Replace the element at the specified position in the frame with value;

class Instruction
frame: constant status of each local variable or stack operand before evaluation;
next: union of possible next instructions;
invoke(method, set〈argument〉): Execute method;
process(set〈operand〉):
Symbolically execute the instruction according to its semantics;

Fig. 1b. Auxiliary procedures used by Turbo’s algorithm for constant propagation

4 Case Studies

Below we discuss four case studies comparing real-world dynamic analyses using
plain DiSL with equivalent versions using Turbo DiSL. They illustrate how Turbo
simplifies the programming of efficient dynamic analysis tools.

4.1 Case Study 1: Configurable Instrumentation

Dynamic analyses often require some external configuration to bypass part of
their behaviors. When analyzing method calls, e.g., one might be interested in the
arguments passed or the execution time of the call. But since not all information
is always needed, it is desirable to configure the analysis accordingly to avoid
unnecessary overhead.

A straightforward implementation of such a configurable analysis is shown
in Fig. 2a. The snippet is woven in at the beginning of each method body; its
code will be executed upon each method entry. All configurable cases are coded
as conditionals within this single snippet. Alas, the configuration is evaluated at
runtime each time the snippet is invoked.7

Now, if the boolean methods profileArgs() and profileTime() always
return the same constant value, one would prefer to evaluate the conditionals
within the snippet once at weave-time instead of evaluating them upon each
method call. In plain DiSL (i.e., without Turbo), the programmer may resort to
guards [8] to factor out the code to be evaluated at weave-time, as illustrated
in Fig. 2b. However, the resulting code is more complicated and verbose, as the
7 The JVM’s just-in-time compiler may be able to remove some of this overhead.



public class MethodAnalysis {
@Before(marker = BodyMarker.class)
static void onMethodEntry() {

if (Configuration.profileArgs()) { ... /* profile method arguments */ }
if (Configuration.profileTime()) { ... /* profile current wall time */ }

}
}

Fig. 2a. Skeleton implementation of a configurable analysis

public class MethodAnalysis {
@Before(marker = BodyMarker.class, order = 1, guard = ArgsGuard.class)
static void onMethodEntryArgs() { ... /* profile method arguments */ }

@Before(marker = BodyMarker.class, order = 0, guard = TimeGuard.class)
static void onMethodEntryTime() { ... /* profile current wall time */ }

}

public class ArgsGuard {
@GuardMethod
static boolean evalGuard() { return Configuration.profileArgs(); }

}

public class TimeGuard {
@GuardMethod
static boolean evalGuard() { return Configuration.profileTime(); }

}

Fig. 2b. Configurable analysis implemented with guards

programmer has to implement two snippets, two guards, and to supply additional
information to the snippet annotation to fix the weaving order.

With Turbo, it is not necessary to use guards to reduce runtime overhead;
the code can be implemented exactly as shown in Fig. 2a above. If the methods
profileArgs() and profileTime() in class Configuration are annotated with
@Pure, Turbo will evaluate these methods at weave-time and remove any dead
code when weaving the snippet. Consequently, the snippet code can stay simple
with all the benefits of weave-time evaluation. As another benefit, the reduction
in code size achieved by Turbo helps avoid overlong methods that would violate
constraints of the JVM.

4.2 Case Study 2: Tracking Monitor Ownership

In the JVM, each object has an associated monitor. As contention for monitor
ownership limits application’s scalability, a dynamic analysis to track ownership
can assist in finding performance bottlenecks in multi-threaded Java programs.

A thread gains ownership of a monitor either explicitly by entering a
synchronized block (i.e., by executing monitorenter at the bytecode level),
or implicitly by entering a synchronized method. In the latter case, it is the
monitor of the receiver object (this) that is acquired for instance methods and
the monitor of the corresponding instance of java.lang.Class for class (static)
methods. Which object and hence which monitor is meant is statically known.



public class MonitorOwnershipAnalysis {
@Before(marker = BodyMarker.class, guard = SynchronizedClassMethodGuard.class)
static void acquireMonitorForClass(MethodStaticContext msc, ClassContext cc) {

Object assocObj = cc.asClass(msc.thisClassName());
... /* track ownership */

}

@Before(marker = BodyMarker.class, guard = SynchronizedInstanceMethodGuard.class)
static void acquireMonitorForInstance(DynamicContext dc) {

Object assocObj = dc.getThis();
... /* track ownership */

}
}

public class SynchronizedClassMethodGuard {
@GuardMethod
static boolean isApplicable(MethodStaticContext msc) {

return msc.isMethodSynchronized() && msc.isMethodStatic();
}

}

public class SynchronizedInstanceMethodGuard {
@GuardMethod
static boolean isApplicable(MethodStaticContext msc) {

return msc.isMethodSynchronized() && !msc.isMethodStatic();
}

}

Fig. 3a. Analysis to track monitor ownership using guards

public class MonitorOwnershipAnalysis {
@Before(marker = BodyMarker.class)
static void acquireMonitor(DynamicContext dc, MethodStaticContext msc,

ClassContext cc) {
if (msc.isMethodSynchronized()) {

Object assocObj =
msc.isMethodStatic() ? cc.asClass(msc.thisClassName()) : dc.getThis();

... /* track ownership */
}

}
}

Fig. 3b. Analysis to track monitor ownership relying on partial evaluation

With plain DiSL, however, this distinction needs to be expressed through
guards, leading to the both duplicated and hard-to-read code shown in Fig. 3a.
Said code is not only verbose but also makes it hard to see that the two
cases (acquireMonitorForClass/ForInstance) complement each other. With
Turbo’s partial evaluation, the above code can be written in a single snippet
using straightforward conditionals as shown in Fig. 3b.

4.3 Case Study 3: Field Access Analysis

Figure 4a shows an instrumentation to profile any access to instance fields. The
first snippet is woven before each read access (getfield) while the second snippet



public class FieldAccessAnalysis {
@Before(marker = BytecodeMarker.class, args = "getfield")
static void onFieldRead(FieldAccStaticContext fasc, MethodStaticContext msc,

DynamicContext dc) {
String methodID = msc.thisMethodFullName();
String fieldID = fasc.thisFieldID();
Object ownerObj = dc.getStackValue(0, Object.class);
... /* profile field read */

}

@Before(marker = BytecodeMarker.class, args = "putfield")
static void onFieldWrite(FieldAccStaticContext fasc, MethodStaticContext msc,

DynamicContext dc) {
String methodID = msc.thisMethodFullName();
String fieldID = fasc.thisFieldID();
Object ownerObj = dc.getStackValue(1, Object.class);
... /* profile field write */

}
}

Fig. 4a. Field access analysis with code duplication

public class FieldAccessAnalysis {
@Before(marker = BytecodeMarker.class, args = "getfield,putfield")
static void onFieldAcc(FieldAccStaticContext fasc, MethodStaticContext msc,

DynamicContext dc) {
String methodID = msc.thisMethodFullName();
String fieldID = fasc.thisFieldID();
int stackDistance = (fasc.getOpcode() == Opcodes.GETFIELD) ? 0 : 1;
Object ownerObj = dc.getStackValue(stackDistance, Object.class);
... /* profile field access (read or write) */

}
}

Fig. 4b. Field access analysis relying on partial evaluation

is woven before each write access (putfield). In the former case, the owner
object resides on top of the operand stack, whereas in the latter case it is the
second topmost stack operand.

Without partial evaluation, it is impossible to combine the two snippets by
choosing the stack location to access based on the opcode. As the first argument
for the pseudo-method getStackValue must be a constant, the snippet would
include two branches to access the stack position zero respectively one; for each
woven join point, one of the branches would constitute dead code. Moreover,
that dead branch would possibly access an illegal position on the operand stack,
resulting in bytecode that would fail verification8. With partial evaluation, such
code duplication is unnecessary; a single snippet with a conditional suffices as
shown in Fig. 4b. Turbo guarantees that this conditional is evaluated at weave-
time (since it only depends on constant data) and that only the proper constant
is propagated to the pseudo-method getStackValue.

8 The DiSL weaver may generate warnings if bytecode is generated that would fail
load-time verification.



public class ExecutionTraceProfiler {
@Before(marker = BasicBlockMarker.class, order = 1, guard = ClassInitGuard.class)
static void onClassInit(MethodStaticContext msc) {

... /* profile class initialization */
}

@Before(marker = BasicBlockMarker.class, order = 0)
static void onBB(CustomBasicBlockStaticContext cbbsc) {

String bbID = cbbsc.thisBBID();
... /* profile basic block entry */

}
}

public class CustomBasicBlockStaticContext extends BasicBlockStaticContext {
public String thisBBID() {

String methodFullName = staticContextData.getClassNode().name
+ "." + staticContextData.getMethodNode().name;

return methodFullName + ":" + String.valueOf(getBBindex());
}

}

public class ClassInitGuard {
@GuardMethod
static boolean evalGuard(BasicBlockStaticContext bbsc, MethodStaticContext msc) {

return (bbsc.getBBindex() == 0) && msc.thisMethodName().equals("<clinit>");
}

}

Fig. 5a. Execution trace profiler using a custom static context class and a guard

public class ExecutionTraceProfiler {
@Before(marker = BasicBlockMarker.class)
static void onBB(BasicBlockStaticContext bbsc, MethodStaticContext msc) {

if (bbsc.getBBindex() == 0 && msc.thisMethodName().equals("<clinit>")) {
... /* profile class initialization */

}
String bbID = msc.thisMethodFullName() + ":" + String.valueOf(bbsc.getBBindex());
... /* profile basic block entry */

}
}

Fig. 5b. Execution trace profiler relying on partial evaluation

4.4 Case Study 4: Execution Trace Profiling

Figure 5a shows a profiler that traces each executed basic block of code, identified
by a unique string comprising the fully qualified method name (package, class,
method, signature) and a basic block ID (an integer value that is unique within
the scope of a method body). In addition, the execution of the first basic block
in each class initializer (method <clinit> at the bytecode level) is specially
tracked by the profiler. The DiSL code in Fig. 5a is complicated; it comprises
two snippets and requires both a custom static context and a guard. The static
context ensures that the special basic block identifiers are built at weave-time,
while the guard identifies the first basic block of class initializers. The snippet



order guarantees that the special profiling of the first basic block in a static
initializer happens before the normal basic block profiling.

Figure 5b shows a naïve single-snippet implementation with a conditional;
the basic block ID is built within the snippet code. While this implementation is
sound, it incurs excessive runtime overhead, since the conditional is evaluated
and the identifier is built at runtime for each woven join point, i.e., for each basic
block in the base program. However, with partial evaluation, the woven bytecode
for both versions of the profiler will be the same, as the conditional depends
on static information only and the string operations are pure. Hence, Turbo
evaluates these parts of the snippet code at weave-time. In the next section, we
will explore weave-time and runtime performance of both versions of the profiler.

5 Performance Evaluation

We use the execution trace profiler of the fourth case study for our performance
evaluation, because it intercepts the highest number of join points, both stati-
cally at weave-time and dynamically at runtime. That is, the impact of partial
evaluation on weave-time performance and the impact of code quality on runtime
performance is most pronounced in this case study.

The base programs are benchmarks from the DaCapo suite (release 9.12).9 We
exclude tradebeans and tradesoap because of a well-known issue with a hardcoded
timeout10, which prevents their use together with expensive instrumentation.
All measurements were conducted on a 3.0 GHz Intel Core 2 Quad Q9650 with
8 GB RAM running Ubuntu GNU/Linux 10.04 64-bit with kernel 2.6.35. We use
Oracle’s JDK 1.6.0_30 Hotspot Server VM (64-bit) with a 7 GB heap and DiSL
pre-release version 0.9 with complete bytecode coverage, i.e., with a completely
woven Java class library [8].

We evaluate three versions of the execution trace profiler: (1) the naïve
implementation shown in Fig. 5b without Turbo, which serves as a baseline for the
comparison; (2) the manually optimized implementation shown in Fig. 5a (without
Turbo), henceforth called “DiSL optimized”; and (3) the naïve implementation of
Fig. 5b with Turbo, called “Turbo DiSL”. Moreover, we consider three performance
metrics: (a) the weave-time, i.e., the time to weave all classes loaded during
a single benchmark iteration; (b) the startup time, i.e., the process time from
creation to the termination of the first benchmark iteration; and (c) the steady-
state execution time, i.e., the median of the execution times of 15 benchmark
iterations within the same JVM process.

For each metric, Fig. 6 illustrates the speedup of “DiSL optimized” and
“Turbo DiSL” relative to the baseline. The gray marks refer to the individual
benchmarks, while the black marks refer to the geometric mean of all speedup
factors. When the speedup factor is below 1x, it indicates a slowdown. The
diagonal line indicates data points for which the performance of “DiSL optimized”
and “Turbo DiSL” is the same.
9 See http://www.dacapobench.org/.

10 See http://sourceforge.net/tracker/?group_id=172498 (artifact ID 2955469).

http://www.dacapobench.org/
http://sourceforge.net/tracker/?group_id=172498
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Fig. 6. Speedup factor relative to the naïve implementation without Turbo for the
considered DaCapo benchmarks (values below 1x indicate slowdowns)

Regarding weave-time, Fig. 6(a), the baseline is generally faster than both the
“DiSL optimized” and “Turbo DiSL” versions, because for the baseline, Turbo is
deactivated and there is no guard to be evaluated at weave-time. However, in a
few benchmarks “DiSL optimized” outperforms the baseline because the reduced
complexity of the inlined snippet code outweighs the cost of guard evaluation.
On average, “DiSL optimized” is only 10% slower than the baseline, while the
use of Turbo increases weave-time by a factor of 4.2. This result clearly shows
the drawback of partial evaluation, a considerable increase in weave-time.

Regarding startup performance, Fig. 6(b), “DiSL optimized” outperforms the
baseline by a factor of 7.4, and “Turbo DiSL” outperforms the baseline by a factor
of 5.18. Interestingly, a single benchmark iteration (which includes weave-time)
is sufficient to achieve a significant speedup by partial evaluation. The manually
tuned version is faster still, as it does not significantly increase weave-time.

Regarding steady-state performance, Fig. 6(c), “DiSL optimized” and
“Turbo DiSL” reach the same high speedup of about 13x. This result high-
lights the strengths of Turbo; high steady-state performance is achieved without
having to write complicated, manually tuned code. The fact that “Turbo DiSL”
significantly outperforms the baseline clearly shows that the just-in-time compiler
of the JVM is not able to perform the same kind of optimizations as Turbo.

6 Related Work

Partial evaluation (also called program specialization) enables aggressive inter-
procedural constant propagation, constant folding, and control-flow simplifica-
tions [6]. An online partial evaluator makes decisions about what to specialize
during the specialization process, while an offline partial evaluator makes all the
decisions before specialization. Hybrid Partial Evaluation (HPE) [12] combines
both approaches by letting the programmer guide the specialization process
through annotations, e.g., to indicate which objects are to be instantiated at
compile time. This is similar to Turbo’s annotations used to guide the partial



evaluation, without which not all optimization decisions can be made in an
offline-fashion. Thus, Turbo can be considered to follow a hybrid approach, too.

Some approaches to partial evaluation are based on translating the source
program into another programming language that provides more powerful spe-
cialization mechanisms. For example, Albert et al. use partial evaluation to
automatically generate specialized programs by transforming Java bytecode into
Prolog to apply powerful constraint logic programming [1]. The Prolog code is
then interpreted by the CiaoPP abstract interpreter [5]. While this approach
allows for powerful interpretative partial evaluation, it only handles a subset of
Java that lacks exception handling, multi-threading, and reflection. In contrast,
Turbo’s partial evaluator is less powerful, but does not have such limitations.

AspectJ [7] is a language often used for the kind of bytecode instrumentation
tasks DiSL is designed for. The standard AspectJ compiler (ajc) already performs
partial evaluation of the aspects’ pointcuts, which are akin to DiSL’s markers,
scopes, and guards. It does not, however, partially evaluate the aspects’ advice,
which are akin to DiSL’s snippets. Masuhara et al. describe this approach in terms
of a semantics-based compilation model [9]. This model follows an interpretative
approach to compilation, based on partially evaluating the AOP interpreter
itself (written in Scheme) to remove unnecessary pointcut tests. In contrast to
Turbo, advice code is not partially evaluated, but rather the partial evaluator
verifies if the advice should be inserted in compiled code or not.

Pesto [2] is a declarative language to describe specialization of object-oriented
programs. Pesto generates all context and configuration information needed to use
the JSpec offline Java partial evaluator [11], which then generates residual code in
AspectJ. Like Turbo, Pesto uses guards to select specialized code when invariants
are satisfied. The approach is based on the observation that partial evaluation of
an object-oriented program creates new code with dependencies that cross-cut
the class hierarchy. Thus, the methods generated by a given specialization can
be encapsulated into a separate aspect. Whereas Turbo uses partial evaluation
to optimize the execution of advice code, Pesto performs specialization of the
base program using AspectJ aspects, which unfortunately do not benefit from
optimizations at the advice level.

Spoon [10] is a framework for program transformation and static analysis
in Java, which reifies the program with respect to a meta-model. This allows
for direct access and modification of its structure at compile-time and enables
template-based AOP; similar to DiSL, users can insert code, e.g., before or after
a method body. Spoon, however, uses source code-level transformations. This
limits its applicability for dynamic analysis, as neither basic blocks analysis nor
efficient access to context information are possible. For constant propagation,
dead-code elimination, and access to static context for template instantiation,
Spoon provides a meta-model partial evaluation facility. Whereas Turbo performs
partial evaluation of advice code, Spoon’s partial evaluator specializes the meta-
model; partial evaluation returns specialized models rather than code.

While Spoon reifies the entire program with respect to a meta-model, the
ALIA4J approach [3] to language implementation stipulates a common meta-



model only for so-called advanced dispatching, during which one or more actions
are selected depending on the current runtime context, and subsequently executed.
Many, but not all bytecode instrumentation tasks possible with DiSL also fit
this model. During language implementation, ALIA4J’s concepts like actions,
predicates, and contexts can be refined to realize the desired language semantics,
e.g., by implementing the semantics based on interpretation or code generation [4].
In the latter case, the code generator is exposed to additional static information
which often allows for partial evaluation of a refined concept. Unlike in Turbo,
this requires manual analysis by the language implementer.

7 Conclusion

We presented Turbo, a new partial evaluator for the domain-specific aspect
language DiSL [8] that targets the development of dynamic program analysis
tools based on bytecode instrumentation. Turbo is designed as an optional
component that is activated by the DiSL weaver during the instantiation of
snippets, after static context information has been resolved. Turbo propagates
constants, reduces conditionals, evaluates pure methods with constant input data,
simplifies certain code patterns, and performs dead-code elimination.

The most significant benefit of Turbo is that it simplifies the DiSL program-
ming model, as we illustrated with four case studies. The DiSL programmer does
not need to factor out code to be evaluated at weave-time, but can rely on Turbo
to automatically detect and optimize such code. While it is always possible to
program efficient instrumentations using DiSL constructs such as guards and
custom static context classes, the equivalent code relying on Turbo is generally
more concise and easier to write, understand, and maintain.

Our performance evaluation confirms that a simple DiSL instrumentation
optimized by Turbo can reach the same steady-state performance as a complicated,
manually tuned instrumentation, at the expense of an increase in weave-time, i.e.,
lower startup performance. Turbo ideally supports rapid prototyping of dynamic
analyses in DiSL; the programmer need not care about factoring out parts that
can be evaluated at weave-time. If the analysis is applied only a few times (e.g.,
during workload characterization) or is applied to long-running base programs,
the increase in weave-time is usually not an issue. If fast weaving is essential, for
example in the case of frequently used profilers, the DiSL programmer may prefer
to refactor the code using guards and custom static context classes; still, Turbo
is valuable during development to explore the possible steady-state performance
of an optimized analysis before implementing it by hand.
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