
Slicing of Components’ Behavior Specification with
Respect to their Composition*

Ondřej Šerý1, František Plášil1,2

1Charles University in Prague, Faculty of Mathematics and Physics
Department of Software Engineering

Malostranske namesti 25, 118 00 Prague 1, Czech Republic
{sery, plasil}@dsrg.mff.cuni.cz

http://dsrg.mff.cuni.cz

2Academy of Sciences of the Czech Republic
Institute of Computer Science

plasil@cs.cas.cz
http://www.cs.cas.cz

Abstract. Being an important means of reducing development costs, behavior
specification of software components facilitates reuse of a component and even
reuse of a component’s architecture (assembly). However, since typically only a
part of the components’ functionality is actually used in the new context, a
significant part of the behavior specification may be superfluous. As a result, it
may be hard to see (and filter out) the actual interplay among the components in
their behavior specification. This paper targets the problem in the scope of
behavior protocols [15]. It presents a technique for slicing behavior protocols
with respect to a given context (composition), designed to remove the unused
behavior from a behavior specification. The technique is based on a formal
foundation, generic enough to support slicing with respect to a property
expressed as a predicate. To demonstrate viability of the proposed approach, a
positive experience with behavior specification slicing applied in real-life case
study is shared with the reader (along with a short description of a prototype).

Keywords: Components-based software engineering, Behavior specification,
Software architecture reuse.

1 Introduction

When reusing a software component (such as a COTS component) in a component-
based application, it is likely that only a part of its functionality will be actually used.
Assuming a behavior specification of the component is available, a significant part of
it may be superfluous in the given application. As a result, it is hard to read and
comprehend the actual interplay among the components from their behavior

* This work was partially supported by the Grant Agency of the Czech Republic project

201/06/0770.

specification. A similar issue arises, when reusing a component architecture
(assembly) in a new environment, employing only a part of the provided
functionality. In order to enhance readability of the behavior specification and
facilitate human comprehension of the actual interplay among the components, it is
desirable to find methods for slicing the behavior specification to make it contain only
the parts really used in a specific component composition and/or environment.

Fig. 1. Architecture of the demo component application, the airport internet providing service

The problem can be illustrated on a demo component application (Fig. 1), designed
as a part of the CRE project [5]. The application constitutes an airport service for
providing a wireless internet connection (to the owners of first or business class
tickets, to the frequent flayer and credit card holders). As to the top-level components,
Firewall realizes the firewall for blocking unauthorized internet connections by
redirecting them to the login web page. The FlyTicketDatabase and
FrequentFlyerDatabase components mediate access to the databases of
airlines companies. CardCenter communicates with the bank credit card services

and AccountDatabase encapsulates accounts with prepaid internet connection.
The Token component is a dynamically created entity representing a single logged
user. All communication is orchestrated by Arbitrator, while DhcpServer
manages dynamic IP address allocation with support for use of the permanent IP
address database. This database, mapping Mac to IP addresses, could be connected
via the IIpMacPermanentDb interface and its use be triggered on via the
IManagement interface. However, both these interfaces are left unbound, since
permanent IP address allocation is not used in the application. The behavior of about
twenty components was specified via the formalism of behavior protocols [15] and,
using a behavior protocol checker, the behavior compliance of these components was
verified.

Assume now an internet provision service in a public garden (payment by credit
card only). Evidently, the component architecture in Fig. 1 can be reused for such a
purpose. A necessary modification involves simplification of DhcpServer (no
permanent addresses), and of Artibrator (no airport-specific logins). Obviously,
it would be very confusing to see any FlyTicketDatabase and
FrequentFlyerDatabase-related behavior in the specification of these modified
components. Thus, slicing of behavior specification with respect to actual component
architecture (composition) is desirable.

1.1 Behavior protocols

The formalism of behavior protocols [15] was developed for behavior specification of
software components. As a behavior, the desired finite sequences of method calls on
component’s interfaces (their interplay) are considered, abstracting from method
parameters and internal data. Behavior protocol specifying behavior of a particular
component is called its frame protocol.

Being a specific process algebra [3], behavior protocol P is an expression that
generates a set of traces of method calls (the language ℒ(P)). More precisely, a trace
is a sequence of tokens representing atomic events related to method invocations (?a↑
stands for accepting a method invocation, !a↑ issuing an invocation, ?a↓ means
accepting the response (end) of a method execution, !a↓ means issuing the response).
Syntactically, a behavior protocol is composed of tokens, operators (“;” sequencing,
“+” alternative, “*” repetition, and “|” parallel interleaving), and abbreviations ?a
(stands for ?a↑; !a↓), ?a{P} (stands for ?a↑; P; !a↓), and similarly for !a, and !a{P}.

In Fig. 2, there is a frame protocol of the DhcpServer component from Fig. 1.
On its required interface IDhcpCallback, it calls IpAddressInvalidated to
inform that an IP address lease has expired. This call can be repeated in parallel (“|”)
with accepting calls on the IManagement provided interface to mode switch
between random IP address assignment and persistent MAC to IP address mapping
(!IIpMacPermDb.GetIpAddress*). Since request for stopping permanent
address assignement can come while !IIpMacPermDb.GetIpAddress* is in
progress (“|”), this has to be captured by explicitly stating requests and responses of
the mode switching calls.

Behavior protocols introduce special case of parallel composition (known from
process algebras), the consent operator ∇. Similar to parallel composition e.g. in
CCS, the consent operator produces interleaving of events, while merging the invoke
“!” and accept “?” events with the same name into an internal event (prefixed by “τ”).
Moreover, the consent operator identifies communication errors: bad activity – the
issued event cannot be accepted, no activity (deadlock) – all of the ready events’
tokens are prefixed by “?”, and infinite activity (divergence) – the composed protocols
“cannot reach their final events at the same time”, so that the composed behavior
would contain an infinite trace (only finite traces are allowed). Technically, these
communication errors are reflected by ∇, appending the erroneous traces with error
events (!ε, ∅ε, and ∞ε for bad activity, no activity, and infinite activity errors,
respectively). For more information, the reader is referred to [1].

(
 !IDhcpCallback.IpAddressInvalidated*
 |
 (
 ?IManagement.UsePermanentIpDb↑ ;
 (
 !IIpMacPermDb.GetIpAddress*
 |
 (
 !IManagement.UsePermanentIpDb↓ ;
 ?IManagement.StopUsingPermanentIpDb↑
)
) ;
 !IManagement.StopUsingPermanentIpDb↓
)*
)

Fig. 2. DhcpServer frame protocol

To illustrate use of the consent operator, suppose that the architecture of the
composed DhcpServer component is to be checked for correctness of its internal
communication—horizontal compliance. This is achieved by applying the consent
operator to the frame protocols of all subcomponents of DhcpServer and finding
out whether the resulting language: ℒ(FPIpAddressManager ∇ FPDhcpListener ∇ FPTransientIpDb
∇ FPTimer), contains any erroneous trace. Another important task is to check whether
the architecture of the composed DhcpServer component obeys its frame
protocol—vertical compliance. For this purpose the inverted frame trick is used. The
frame protocol of DhcpServer is inverted (“?” are substituted by “!” and vice
versa) and the inverted protocol is composed with the protocol of the architecture:
ℒ(FPDhcpServer

-1 ∇ FPIpAddressManager ∇ FPDhcpListener ∇ FPTransientIpDb ∇ FPTimer). The
result is then sought for erroneous traces. The key idea behind the trick is testing the
architecture in the most general environment of DhcpServer, represented by its
inverted frame protocol FPDhcpServer

-1.

1.2 Goal and structure of the paper

The goal of the paper is to propose a way of reducing frame protocols of components
with respect to a particular component composition (architecture/assembly) in order
to omit the unused parts of the behavioral specification. This should clarify the actual
role of each component in their composition and make understanding of the overall
behavior interplay of the components easier.

This goal is reflected in the structure of the paper as follows. Formal foundation of
behavior protocol reductions and protocol slicing is provided in Sect. 2, while Sect. 3
introduces slicing with respect to composition and proposes a technique to achieve
this kind of protocol reduction. The last sections are devoted to a prototype’s
description, related work discussion, and a conclusion.

2 Reduction and slicing of behavior protocols

2.1 Reduction preorder

First of all, it is necessary to formalize the notion of reduction; i.e. to define when a
behavior protocol can be considered a reduction of another one. For this purpose, the
notion of substitutability of components (and their behavior protocols) is crucial.
Suppose that a component B working in an environment EnvB without any
communication errors (Fig. 3-a) is to be substituted by another component A and each
of them is associated with its frame protocol.

Definition 1. A behavior protocol a is substitutable for a behavior protocol b, if
ℒ(a ∇ b-1) does not contain any trace with communication error. A component A is
substitutable for a component B, if the frame protocol of A is substitutable for the
frame protocol of B.

In other words, Def. 1 says that a component A is substitutable for another
component B, if by placing A to the most general environment of B (described by the
inverted protocol b-1) does not result in any communication error. Thus A can be
safely placed into any environment EnvB of B (Fig. 3-b), assuming B is working
without any communication errors in this environment.

Having the substitutability defined, the next step is to formalize the reduction itself.
The basic idea is as follows: A component B Bred with a reduced frame protocol bred
working in an environment Envred, can be replaced by a component B with the frame
protocol b, provided b is substitutable for bred and ℒ(bred) ⊆ ℒ(b), Fig. 3-c. This is
captured by defining a reduction preorder ≤R over behavior protocols in Def. . For
the proof that the relation ≤

2
R is really a preorder, the reader is referred to []. 17

Definition 2. Let bred and b be behavior protocols. bred is reduction of b, bred ≤R b, if b
is substitutable for bred and ℒ(bred) ⊆ ℒ(b).

Fig. 3. Motivation for protocol reduction basic definitions

Intuitively, the reduction bred of b is obliged to describe only a subset of the traces
described by the protocol b (ℒ(bred) ⊆ ℒ(b)). Furthermore, the original protocol b
has to be substitutable for its reduction bred. This is required to assure that any
architecture (Envred) designed using the reduced virtual component BBred can safely use
any component B described by the original protocol b instead of BredB . Thus the
designer can safely use the simpler reduced protocol bred and be sure that the resulting
architecture will function correctly even with a component featuring the more
complex original protocol b.

2.2 Minimal reduction

The reduction preorder presented in Sect. 2.1 constitutes a formal instrument for
deciding whether a protocol is a valid reduction of another one and for formalizing a
set of valid reductions of a given protocol. However, the typical requirement is to find
“in some sense” the minimal reduction of a given protocol. Furthermore, there is
usually a constraint the resulting reduction should satisfy, so the goal is to find the
minimal reduction satisfying the constraint (represented as a predicate C over
languages in Def. 3). What the constraint actually is follows from the concrete type of
the reduction, e.g. there is a set of important traces that should be preserved in the
reduction (the actual constraint predicate for reduction with respect to composition is
to be discussed later in Sect. 3). The minimal reduction could be straightforwardly
defined as follows.

Definition 3. Let b be a behavior protocol over the alphabet Σ and C a predicate over
2Σ* (the constraint). A behavior protocol bred is a minimal reduction of b satisfying C,
if bred ≤R b, C(ℒ(bred)) holds, and there is no behavior protocol c such that c ≤R bred,
C(ℒ(c)) holds, and ℒ(c) ⊂ ℒ(bred).

Even though such a definition seems natural, there are several issues to address:
First, the minimal reduction is generally not unique, i.e. more minimal reductions can
exist (even infinitely many, since, e.g. ℒ(a) = ℒ(a+a+…)). Second, the actual
syntactical form of the protocols is not considered—the semantics of reduction is
based on the languages generated by the protocols only. Third, if one tries to address
the first two issues by requiring the minimal reduction to be the shortest one, then
finding such a minimal reduction is a PSPACE complete problem. This follows from
the close relation between regular expressions and behavior protocols and the well
known fact that minimizing a regular expression is a PSPACE complete problem [7],
[10], and [12] (a full-fledged justification is out of scope of the paper).

These observations trigger the need to develop a technique for finding reductions
that would: i) assure uniqueness of the result, ii) take the actual syntactical form of the
protocols into consideration, iii) be of a “reasonable” computational complexity, and
iv) adhere to the reduction preorder as defined in Sect. 2.1. Such a technique –
protocol slicing – is proposed in Sect. 3. It is based on the slice concept:

Definition 4. Let a and b be behavior protocols. We say a is slice of b, if a is
reduction of b (a ≤R b) and the syntax tree of a is derived by pruning the syntax tree
of b.

In other words, the protocol reduction concept is based on the languages generated
by the protocols, whereas protocol slicing brings into account also the syntactical
form of the protocols by pruning the syntactical tree of the protocol to be reduced. In
consequence, given a protocol b and a constraint C, there can be no its minimal
reduction being also a slice of b. For instance, consider the protocol ?a* and the
constraint that the method a will be called sequentially three times (more formally, the
predicate C is defined as C(ℒ) ≡ (<?a; ?a; ?a> ∈ ℒ), where ℒ is a language), then
the protocol ?a* can be minimally reduced to ?a; ?a; ?a. On the other hand, there are
only two slices of the protocol: NULL and ?a*, i.e. it is either sliced to empty protocol
(which does not satisfy the constraint of three ?a), or remains unmodified. However,
in general, slicing is practically more important than “optimal, language-based”
reduction, since the former inherently means simplification of a protocol, while the
latter can result in a blow-up of the protocol. For example, consider again the
DHCPServer frame protocol in Fig. 2 and assume that the repetition on the lines 4–
15 is to be repeated 3 times. The corresponding minimal reduction takes the form
depicted in Fig. 4. Obviously, this reduction result becomes hard to read.

Definition 5. Let a be a behavior protocol over the alphabet Σ and C a predicate over
2Σ* (the constraint). A behavior protocol b is a minimal slice of a satisfying C, if b is a
slice of a, C(ℒ(b)) holds, and there is no behavior protocol c such that c is a slice of
b, C(ℒ(c)) holds, and c ≠ b.

Fig. 4. A minimal reduction of the DHCPServer frame protocol

(
 !IDhcpCallback.IpAddressInvalidated*
 |
 (
 ?IManagement.UsePermanentIpDb↑ ;
 (
 !IIpMacPermDb.GetIpAddress*
 |
 (
 !IManagement.UsePermanentIpDb↓ ;
 ?IManagement.StopUsingPermanentIpDb↑
)
) ;
 !IManagement.StopUsingPermanentIpDb↓
);(
 ?IManagement.UsePermanentIpDb↑ ;
 (
 !IIpMacPermDb.GetIpAddress*
 |
 (
 !IManagement.UsePermanentIpDb↓ ;
 ?IManagement.StopUsingPermanentIpDb↑
)
) ;
 !IManagement.StopUsingPermanentIpDb↓
);(
 ?IManagement.UsePermanentIpDb↑ ;
 (
 !IIpMacPermDb.GetIpAddress*
 |
 (
 !IManagement.UsePermanentIpDb↓ ;
 ?IManagement.StopUsingPermanentIpDb↑
)
) ;
 !IManagement.StopUsingPermanentIpDb↓
)
)

3 Slicing with respect to composition

This section presents a concrete protocol slicing technique—slicing with respect to
composition. This technique is the proposed solution addressing the goal articulated
in Sect. 1.2, i.e. to develop a method to reduce behavior protocols with respect to their
particular composition (reflecting a desired component architecture/assembly) in
order to omit the parts of the behavioral specification superfluous with respect to the

composition. The technique is based on the formal basis provided in Sect. 2, and the
general slicing strategy described in [18], which aims at extending the program slicing
paradigm to general slicing of an expression.

Again, the goal is to determine the unused behavior in a composition of given
components and eliminate it from the behavior specification. Assuming the behavior
of components is specified via their frame protocols FP1, FP2, … , FPn and the
language of the composition of the components is thus LC = ℒ(FP1 ∇ FP2 ∇ … ∇
FPn), it is desirable to find minimal reductions FPmr

1, FPmr
2, … , FPmr

n of the
protocols FP1, FP2, … , FPn such that ℒ(FPmr

1 ∇ FPmr
2 ∇ … ∇ FPmr

n) = LC. In
other words, the composition of the reduced protocols should specify precisely the
same behavior as the composition of the original protocols. In terms of Def. 3, the
predicate is chosen for each protocol FPi separately as Ci(ℒ(FPmr

i)) ≡ (ℒ(FP1 ∇ …
∇ FPmr

i ∇ … ∇ FPn) = LC). Moreover, it would be an advantage to echo this
reduction in these frame protocols by their syntactical simplification—to slice them.
However minimal reduction cannot be reflected accurately by slicing in general
(Sect. 2.2); fortunately, as a compromise, minimal slicing of these frame protocols is
achievable—see below. Thus instead of by a minimal reduction FPmr

i, each FPi is to
be replaced by a minimal slice FPms

i of it, again asking similarly Ci(ℒ(FPms
i)) ≡

(ℒ(FP1 ∇ … ∇ FPms
i ∇ … ∇ FPn) = LC) to hold.

The general expression slicing strategy [] prescribes slicing to be done in three
phases: parsing – creation of syntax tree of an expression, marking – marking syntax
tree nodes that are important with respect to the given slicing criterion, and
outputting – creating slice of the original expression based on the marks on the syntax
tree nodes.

18

Clearly, the actual logic of a specific slicing technique lies in the design of the
phases, namely of the second one which determines how the slicing criterion is
applied. The first and third phases are highly specific to the nature of the expression
being sliced, but they do not influence the actual application of the slicing criterion.
The phases of the proposed slicing with respect to composition are as follows (Fig. 5).
First, parsing of the protocols is done using the JavaCC [9] generated parser. The goal
of the second phase is to mark the nodes of the syntax trees, which represent the
behavior (sub)protocol relevant in the given composition. Basically, this is achieved
by traversing the reachable states of the composition state space; all the syntax tree
nodes that were used to generate reachable states are marked. This assures that the
language of the resulting slice satisfies the constraint C articulated abovei . In the third
phase, the slice is acquired by pruning the syntax trees of individual protocols based
on the marks on their nodes (the unmarked nodes are removed).

By removing all the unmarked nodes, the technique clearly creates as small slices
as possible, assuming that the protocols are not redundant, i.e. they do not specify
redundantly (as e.g. protocol a? + a? does). This assumption does not cause any
harm—real-life behavior protocols are usually not redundant, since redundancy does
not introduce any new information into the behavioral specification.

For illustration, slicing of the behavior protocols ?a{!x}* | ?b* and !a{?x + ?y}*
with respect to their composition via the consent operator ∇ is depicted in Fig. 5. In
the 1st phase, parse trees of these behavior protocols are constructed. Then, in the 2nd
phase, the behaviors specified by these protocols are composed via ∇. All the

reachable states of the composition state space are sought on-the-fly and all the nodes
of the parse trees that were used to generate the reachable states of the composition
are marked. Finally, in the 3rd phase, the parse trees are pruned to contain only the
marked nodes which make sense (note deletion of the | and + operators, when losing
the second operand). The resulting sliced protocols are: ?a{!x}* and !a{?x}*, which
are minimal slices (and even minimal reductions, in this special case).

Fig. 5. Three phases of slicing with respect to composition

4 Tools and Case Study

The proposed technique was implemented as a stand alone application BPSlicer,
being an extension of the dChecker behavior protocol checker written in Java 1.5,
both available at [6].

BPSlicer was applied to the case study mentioned in Sect. 1 (Fig. 1), which was
modified (reused) to provide internet access in a public garden, where credit card
payment was considered as the only option. The frame protocol representing the
environment was manually modified accordingly. Then the frame protocols of the
components were sliced with respect to composition by BPSlicer. As expected, the
frame protocols of Token, Firewall, CardCenter, and AccountDatabase
remained unchanged, since they do not feature any airport specific functionality. On
the other hand, the frame protocols of FlyTicketDatabase and
FrequentFlyerDatabase were reduced to a NULL protocol, which means that
these components were not used in the new environment and could be safely removed

from the architecture. The frame protocols of Arbitrator and DhcpServer were
reduced partially: The airport specific login calls were omitted from the frame
protocol of Arbitrator. As to DhcpServer, the unused part describing the
permanent MAC to IP address association was sliced off (actually this feature was not
used even in the original application; note the unbound IManagement and
IIpMacPermDb interfaces in Fig. 1).

Technically speaking, the slicing technique proposed in Sect. 3 is implemented as a
part of the consent operator evaluation in dChecker which also uses parse trees and
creates on the fly the state space of the parallel composition (BPSlicer adds the
marking). As an aside, the state space generated by the behavior composition of the
top-level components in Fig. 1 features around 4.5 millions of states and its error-free
communication was verified by the dChecker in 126 seconds (Core Duo T2400
2x1.83 GHz, 1 GB RAM, 600 MB for Sun JVM 1.5.0.08, Linux 2.6.17). For
comparison, the garden scenario, featured 421 980 states and took 23 seconds to
verify the communication and slice the protocols to the size indicated in Table 1 (it
took 18 seconds without slicing).

Table 1. Summary of the case study results. Reduced protocols are printed in bold script

#states protocols original reduced
Environment 13 13
Arbitrator 15 625 8 125
DhcpServer 33 3
Token 245 245
Firewall 81 81
AccountDatabase 729 729
CardCenter 3 3
FlyTicketDatabase 7 1
FrequentFlyerDatabase 7 1

5 Related work

There are two main areas of related work. The first one includes research sharing our
motivation—applying slicing to formal specification and/or the software architecture
in order to facilitate its reuse and make its comprehension easier. In [8], Hassine et al.
apply generalized slicing to functional requirement specification stated in Use Case
Map notation. Their goal is to promote reuse of the requirement specification and aid
with software maintenance by developing techniques that would help identify feature
dependencies and interactions. Although the motivation is very similar to ours, the
levels of abstraction differ.

The works by Stafford and Wolf [19] and Zhao [20] target slicing of software
architecture description with similar goals. Stafford and Wolf provide the Aladdin
tool for slicing of software architecture specified in Rapide [11]. In his work, Zhao
describes a technique for reduction of software architecture in Wright [2]. Both these
works aim at removing connectors and/or components from the software architecture

based on the behavioral description and a slicing criterion. In contrast, our approach
goes one-step further, because we can reduce unused behavior at a finer level of
granularity—method calls, not being limited to granularity of components and
connectors as in [19] and [20].

The second area pertains related work which is focused on component adaptation.
In [16], Reussner presents a concept of parameterized contract on component
interface. The contract specifies which of the provided interfaces of a component can
be safely used if specific required interfaces are bound. This approach, in addition to a
separate behavior specification on each interface, needs an explicit specification of
the contract between the provided and required interfaces (in a different formalism).
On the contrary, a frame protocol describes behavioral specification of a component
as a whole (the interplay of calls on the proved and required interfaces), so that all the
necessary information for adaptation of the specification is available in the protocol.
In a similar vein, the relativity of a component’s failure with respect to a particular
environment it is used in is further discussed in [1].

Bobeff and Noye [4] use the techniques of program slicing and partial evaluation
for component (code) specialization (adaptation). They envision delivery of generic
components (component generators) that would automatically generate components
adapted to the environment they are used in. When compared to our approach, [4]
works at the code level, requiring it to be known at the time of adaptation. Our
technique works solely on the level of behavioral specification and can be applied
even when the actual code is not available, which is typical for COTS components.
Similar to [4] is the Koala component framework [], which statically optimizes the
architecture for specific parameters. Our solution is more flexible since it takes into
account also the behavior (not only static configuration of components).

13

6 Conclusion

In order to help a software designer with reusing software components and even
whole component architectures, a technique for slicing behavior protocols, slicing
with respect to composition, was presented. Given a composition of components, the
technique can remove the unused behavior from the behavior specification, clarifying
thus the actual roles of individual components.

Viability of the proposed technique was demonstrated by the prototype
implementation and its use in a non-trivial case study in Sect. 4. Moreover, the formal
foundation in Sect. 2 was designed to allow for an easy extensibility, so that it can be
used as a basis for other slicing techniques than the one described. For example,
slicing with respect to property, omitting the parts of the behavior specification
irrelevant to a certain user-specified property, could be considered. We also envision
the contribution of our work to the problem of modeling component environment for
the purpose of code checking of isolated primitive components [14], as the presented
technique of slicing with respect to composition can be used to restrict the model of a
component’s environment, reducing size of the state space to be explored and making
code checking more feasible in this way.

Acknowledgements

The authors would like to thank to Pavel Ježek and Jan Kofroň for sharing the CRE
demo application architecture diagram, being a basis for Fig. 1 and to Pavel Parízek
for valuable comments and suggestions.

References

1. Adamek, J., Plasil, F.: Component Composition Errors and Update Atomicity: Static
Analysis, Journal of Software Maintenance and Evolution: Research and Practice 17(5),
John Wiley & Sons, Inc., pp. 363–377, 2005.

2. Allen, R., Garlan, D.: A Formal Basis for Architectural Connection, ACM Transactions on

Software Engineering and Methodology 6(3), ACM Press, pp. 213–249. 1997.

3. Bergstra, J.A., Ponse, A., Smolka, S.A.: Handbook of Process Algebra, Elsevier, ISBN: 0-
444-82830-3, 2001.

4. Bobeff, G., Noye, J.: Molding Components using Program Specialization Techniques,

Eighth International Workshop on Component-Oriented Programming, 2003.

5. The CRE project (Component Reliability Extensions for Fractal Component Model),
http://kraken.cs.cas.cz/ft/public/public_index.phtml.

6. dChecker & BPSlicer, http://dsrg.mff.cuni.cz/projects/dchecker.

7. Gramlich, G., Schnitger, G.: Minimizing NFA's and Regular Expressions, In proceedings

of the 22nd Annual Symposium on Theoretical Aspects of Computer Science, STACS
2005, LNCS 3404, Springer, pp. 399–411, 2005.

8. Hassine, J., Dssouli, R., Rilling, J.: Applying Reduction Techniques to Software

Functional Requirement Specifications, In proceedings of the System Analysis and
Modeling, 4th International SDL and MSCWorkshop, SAM 2004, LNCS 3319, Springer,
pp. 138–153, 2004.

9. JavaCC (Java Compiler Compiler), https://javacc.dev.java.net.

10. Jiang, T., Ravikumar, B.: Minimal NFA problems are hard, SIAM Journal on Computing

22(1), pp. 1117–1141, 1993.

11. Luckham, D.C., Kenney, J.J., Augustin, L.M., Vera, J., Bryan, D., Mann, W.:
Specification and Analysis of System Architecture Using Rapide, IEEE Transactions on
Software Engineering 21(4), IEEE Press, pp. 336–355, 1995.

12. Meyer, A.R., Stockmeyer, L.J.: The Equivalence Problem for Regular Expressions with

Squaring Requires Exponential Space, In proceedings of the 13th Annual Symposium on
Switching and Automata Theory, FOCS, pp. 125–129, 1972.

http://kraken.cs.cas.cz/ft/public/public_index.phtml
http://dsrg.mff.cuni.cz/projects/dchecker
https://javacc.dev.java.net/

13. van Ommering, R., van der Linden, F., Kramer, J., Magee, J.: The Koala Component
Model for Consumer Electronics Software, IEEE Computer 33(3), pp. 78–85, 2000.

14. Parizek, P., Plasil, F.: Modeling Environment for Component Model Checking from

Hierarchical Architecture, In proceedings of Formal Aspects of Component Software
(FACS'06), Prague, Czech Republic, ENTCS, 2006

15. Plasil, F., Visnovsky, S.: Behavior Protocols for Software Components, IEEE Transactions

on Software Engineering 28(11), IEEE Press, pp. 1056–1076, 2002.

16. Reussner, R.H.: Automatic component protocol adaptation with the CoConut/J tool suite,
Tools for program development and analysis 19(5), Elsevier Science Publishers, pp. 627–
639, 2003.

17. Sery, O.: Model Checking and Reduction of Behavior Protocols, Master thesis at Charles

University in Prague, 2006, available at: http://dsrg.mff.cuni.cz.

18. Sloane, A.M., Holdsworth, J.: Beyond Traditional Program Slicing, In proceedings of the
1996 ACM SIGSOFT International Symposium on Software Testing and Analysis (ISSTA
‘96), ACM Press, pp. 180–186, 1996.

19. Stafford, J.A., Richardson, D.J., Wolf, A.L.: Architecture-level Dependence Analysis for

Software Systems, International Journal of Software Engineering and Knowledge
Engineering 11(4), pp. 431–451, 2001.

20. Zhao, J.: A Slicing-Based Approach to Extracting Reusable Software Architectures, In

proceedings of the Conference on Software Maintenance and Reengineering, IEEE
Computer Society, pp. 215–223, 2000.

http://dsrg.mff.cuni.cz/

	1.2 Goal and structure of the paper

