Benchmark Precision and Random Initial State

Tomas Kalibera, Lubomir Bulej, Petr Tuma

DISTRIBUTED SYSTEMS RESEARCH GROUP

http://nenya.ms.mff.cuni.cz

CHARLES UNIVERSITY PRAGUE Faculty of Mathematics and Physics

Goal: Tool for improving software performance.

- Regular automatic benchmarking
 - Incorporate into regression testing
- Automated detection of regressions
 - Detect changes in benchmark results
- Fixing important regressions
 - Automatically find suspect modifications
 - (Manually) fix regressions if possible

http://nenya.ms.mff.cuni.cz/projects/mono Proceedings: pg. 853

Benchmarks are unstable.

Tomas Kalibera SPECTS 2005, Cherry Hill, NJ, USA

Benchmark results differ in each execution.

Individual samples, vertical lines denote new runs

Random state is integral part of real systems.

- Differences in results from different executions cannot be removed by
 - Shutting down non-related services
 - Disconnecting network, unloading drivers
 - Turning off randomization of virtual addresses
 - Rebooting before each benchmark execution
 - Excessively long warm-up phase in each execution

The problem can be quantified.

- Impact factor of random initial state
 - Robust to non-normality, outliers
 - Calculated from benchmark results by simple statistical simulation
- Defined as ratio of variability in data from different runs to variability in data from the same run
 - Values ≥1, 1 means no impact

Impact of random state is system dependent.

Benchmark	Platform	Impact Factor
FFT	Pentium/Windows	94.74
FFT	Itanium/Linux	35.91
FFT	Pentium/Linux	25.81
FFT	Pentium/DOS	1.06
RPC Marshaling	Pentium/Linux	2.61
RPC Ping	Pentium/Linux	1.10
RUBiS	Pentium/Linux	1.01

Differences in results are due to cache misses.

Tomas Kalibera SPECTS 2005, Cherry Hill, NJ, USA

Conclusion: Benchmarking is still possible.

- Random initial state is a reality
- Implications for benchmarking
 - Need to run more times, possibly re-compile
 - Non-trivial statistical evaluation required
- Current status
 - Simple hierarchical model
 - Allows precision estimation, experiment planning
 - http://nenya.ms.mff.cuni.cz/benchmark

Mono Regression Benchmarking Project

Regression benchmarking publications

- Kalibera, T., Bulej, L., Tuma, P.: Quality Assurance in Performance: Evaluating Mono Benchmark Results, accepted as a full paper on Second International Workshop on Software Quality (SOQUA 2005), Erfurt, Germany
- Kalibera, T., Bulej, L., Tuma, P.: Automated Detection of Performance Regressions: The Mono Experience, accepted as a full paper on 13th Annual Meeting of the IEEE International Symposium on Modeling, Analysis and Simulation of Computer and Telecommunications Systems (MASCOTS 2005), Atlanta, GA, USA
- Bulej, L., Kalibera, T., Tuma, P.: *Repeated Results Analysis for Middleware Regression Benchmarking*, Performance Evaluation: An International Journal, Performance Modeling and Evaluation of High-Performance Parallel and Distributed Systems, Elsevier, 2005
- Bulej, L., Kalibera, T., Tuma, P.: *Regression Benchmarking with Simple Middleware Benchmarks*, proceedings of IPCCC 2004 Mid-dleware Performance Workshop, IEEE 2004

