
The power of MOF-based meta-modeling of components ∗

Petr Hnetynka1, Frantisek Plasil1,2

1Department of Software Engineering

Faculty of Mathematics and Physics

Charles University, Malostranske namesti 25

Prague 1, 118 00, Czech Republic

2Institute of Computer Science

Academy of Sciences of the Czech Republic

Pod Vodarenskou vezi 2, Prague 8

182 07, Czech Republic

{hnetynka, plasil}@dsrg.mff.cuni.cz

Abstract

To allow comfortable and easy development, component

systems have to provide a rather a big set of development

supporting tools including at least a tool for composition

and repository for storing and retrieving components. In

this paper, we evaluate and present advantages of using

MOF and meta-modeling during definition of component

system and also during development of the supporting tools.

Most of the presented arguments are based on a broad

practical experience with designing the component systems

SOFA and SOFA 2; the former designed in the classical ad

hoc “manual” way, while the latter via meta-modeling.

1 Introduction

Component-based development (CBD) has become a

well-understood and widely used technique for develop-

ing not only large enterprise applications, but in fact for

any type of applications, including embedded ones. Using

this technique, applications are built by composing already

developed components. Every component system (i.e. a

system and/or framework allowing to develop and com-

pose components) uses a different view as to what a soft-

ware component is, but a generally agreed consensus is that

“component” means a black-box entity with well-defined

interface and behavior. The interface of a component com-

prises the services provided by it and the services required

from other cooperating components and/or an environment

(container). To specify its particular view on components, a

component system defines its component model, i.e. a set of

abstractions, which together define components, their com-

position, etc. Thus, the term component has to be always

interpreted in the scope of a given component model.

∗This work was partially supported by the Czech Academy of Sciences

project 1ET400300504.

In order to allow really fast and comfortable develop-

ment and management of component-based applications,

component systems should provide rather a big set of devel-

opment supporting tools and infrastructure. These tools and

infrastructure usually comprise of at least a tool for devel-

oping and composing components and a repository storing

and serving already developed components.

However, creating such an infrastructure is rather te-

dious and time-and-other-resources-consuming task. This

is probably why especially academia-based component sys-

tems provided sophisticated component models with plenty

of advanced features, but with no or very limited support for

real development of components at a large scale. In order

to overcome this problem, modern component systems try

to heavily employ modeling and meta-modeling approaches

that allow automatic generation of many supporting tools.

The component models of classical (“old”) component

systems were usually defined by an ADL (Architecture Def-

inition Language). Since these ADL languages were pro-

prietary, the development tools were developed completely

manually from scratch. Another related problem was that

the semantics of a component model had to be typically de-

fined in a natural language. Finally, as the cores of compo-

nent models had been very similar (in many case in fact the

same), a straightforward idea was to allow interoperability

between models and use component from one model in an-

other. This issue is not only making components exchange-

able between the systems but also it requires interoperable

tools to allow developing and managing such heterogeneous

applications. But with hand-made tools and infrastructure,

the interoperability was quite difficult.

As stated above, the modern component systems usually

use meta-modeling approaches to define their component

models and, more interestingly, to automatically generate

repositories, tools for development, editors for designing

and composing components, etc.

Additionally, meta-models provide means for defining

semantics in a formal way (at least partially), and also there



are approaches supporting easy interoperability and trans-

formations between different models.

All these advantages of the meta-modeling approaches

bring faster development and maintenance of the compo-

nent systems themselves and therefore faster adoption of

the systems to the production.

1.1 Goal and structure of the paper

In this paper, based on our experience with designing

and developing component systems (SOFA in particular)

and analysis of several existing component systems, such

as Fractal and Koala, we present the advantages of meta-

modeling approach in component systems. Also we evalu-

ate and compare the meta-modeling approach with the clas-

sical one by comparing the SOFA [22] (based on ADL) and

SOFA 2 [7] (based on meta-model) component models. To

achieve the goal, the paper is structured as follows. Sec-

tion 2 presents an overview of meta-modeling principles

and contemporary component models. In Section 3, we

articulate advantages of using meta-models for component

systems specification, design, and implementation, while

Section 4 compares SOFA and SOFA 2 definitions and also

presents related work. Section 5 concludes the paper.

2 Background

2.1 Models and meta-models

Models and meta-model are the main concept in MDD

(model-driven development), which is one of the most pop-

ular development paradigms nowadays. In MDD, a system

is developed as set of models. A typical approach starts

with modeling the system on a platform independent level,

i.e. capturing only the business logic of the system, leaving

out any implementation details. In a series of transforma-

tion, this platform independent model is then altered into

a platform specific model, i.e. a model reflecting also the

details specific for the platform chosen for implementation

(such as Java and .NET).

The abstractions featuring in a model M, i.e. the ele-

ments to be used for modeling, are described by a meta-

model, i.e. a model of M. Many times, the meta-model is

referred to as a domain specific language, since it defines a

means for modeling system in a specific domain.

An important standard employing the idea of MDD is

the OMG’s Model Driven Architecture (MDA) [16] spec-

ification. For describing meta-models, OMG has defined

the Meta-Object Facilities (MOF) [17] standard. It defines

a language and framework for specifying and constructing

meta-models and for implementing repositories holding in-

stances of models. To enable interchange of these instances

among repositories, MOF defines an XML based format

denoted XMI (an abbreviation of “XML Meta-data Inter-

change”).

Since the MOF language does not have any specific vi-

sual representation, for specifying meta-models, a subset of

UML class diagrams is used. As an aside, since the ver-

sions 2.x of both UML and MOF were introduced, there is

a common core of the MOF and UML meta-models.

In the rest of the paper, by “meta-model” we always

mean a MOF-based meta-model.

The primary meta-model elements are the class (defining

abstractions), and association∗ (defining relations among

classes). For illustration, Figure 1 shows a tiny subset of

the core of the SOFA 2 meta-model (details are explained

in Section 3.1).

2.2 Component models

As mentioned in Section 1, to allow really fast and effi-

cient application development via component composition,

a component system has to provide a rather large set of

development and management tools. These tools should

provide at least a functionality for component composition

(defining the architecture of an application composed of

components) and a repository to store the already available

components (both those designed ad hoc to fulfill a very

specific task, and generic ones intended for reuse).

Classical component systems like Darwin [14], Wright

[1], and others are defined around their ADL. In fact, an

ADL determined the corresponding component model via

the syntactical constructs corresponding to particular ab-

stractions and their relation. The semantics was described

in plain English. These systems did not provide any repos-

itory and thus they were intended for capturing the archi-

tecture and component composition, not providing means

for component reuse. ACME [9] was an attempt to create

a common ADL (de-facto standard) but it was not widely

adopted. Tools for all these ADLs were developed manu-

ally ad hoc and usually allowed to reason about correctness

of behavior composition.

Contemporary component systems usually provide more

complex infrastructure since they are not ADL centered. In

the following overview we focus on several component sys-

tems which deal with the whole component lifecycle (from

design to run-time).

An industry-based system is the CORBA Component

Model (CCM) [15]; it is based on a flat component model,

i.e. components cannot be composed hierarchically. Com-

ponents are described in CORBA IDL v.3 and composition

is done at run-time (i.e. there are no IDL constructs for that).

∗To be precise, they should be named meta-classes and meta-

associations (as they express meta-model) but for the sake of simplicity,

we use only terms classes and associations in the paper.



The run-time infrastructure is defined by the OMG deploy-

ment and configuration specification and offers a repository,

deployment environment, etc. — all of them described by

meta-models.

The Koala component model [19] is the based of an-

other industrial system and allows creation of hierarchical

component-based embedded applications. It uses its own

ADL (heavily inspired by Darwin) and the developed com-

ponents are stored in a repository for further reuse. Also,

there are tools for visualization of architectures. The whole

infrastructure, including an ADL compiler and repository

were designed ad hoc and written manually.

Fractal [4] is an abstract component model, which has

multiple implementations (in Java, C, . . . ). Components are

primarily built at run-time using API calls (defined in the

Fractal specification). An ADL also exists, but it can be

viewed as a “shortcut” for creation components and archi-

tectures — all definitions of components are transformed

into the API calls. The specification of Fractal does not pre-

scribe existence of any repository but there are attempts to

do so.

The SOFA component model [22] and, especially, its

new version SOFA 2 [7] furnishes a general purpose compo-

nent system. The original version of SOFA was defined by

ADL and the repository and all tools were written by hand

while SOFA 2, has been redesigned using a meta-model and

most of its supporting tools and the repository have been

generated from the meta-model. In a more detail, the com-

parison between these versions is discussed in Section 4.

The list of component system above definitely is not

complete (especially the list of those designed in academia

is not a shore one) but it provides a base for comparing

SOFA with those designed at least partially for industrial

applications. There are also other contemporary component

systems defined by a meta-model, for example Palladio [3],

PRISMA [21], and others, but most of them do not sup-

port the whole component lifecycle (usually they focus on

design only). For more details see Section 4.

3 Applying MOF in component model design

and implementation

As mentioned in Section 1 and Section 2.2, many con-

temporary component systems are converting to or have

been defined from the beginning by a meta-model. From

these component systems, most of them use for their

meta-model definition and repository generation the Eclipse

Modeling Framework (EMF) [8], which is an implementa-

tion of the MOF standard (even though EMF does not rig-

orously comply with the MOF standard the differences are

very subtle, not visible to the developer using EMF). In ad-

dition to being a mature tool well supported an maintained,

EMF is popular since it is available freely as an open source

plugin for Eclipse, and also since a framework for gener-

ating model editors from a meta-model definition (called

GMF — Graphical Modeling Framework [10]) is available.

In summary, based on experience with SOFA 2, the three

most important benefits of using meta-models are (i) the

definition of the component model syntax but also its se-

mantics, (ii) the relatively fast and semi-automated creation

of the development supporting tools, and (iii) the semi-

automated creation of runtime management tools. In the

rest of this section, we go through these topics in more de-

tails.

3.1 Defining semantics of a component
model

In a component model specification, the meta-model de-

fines the elements and abstractions (and also the associa-

tions among them) forming the component model. Impor-

tantly, by the associations, it explicitly defines the relations

among these abstractions.

Frame Interface

ArchitectureBinding

Endpoint

InterfaceType

SubcomponentInstance

0..*

provided
0..*

required

type

0..*

subcomponent

instantiates

0..*

binding

0..*

endpoint

Figure 1. A core of the SOFA 2 meta-model

Figure 1 shows an example of a meta-model, which is

a core subset of the meta-model of the SOFA 2 compo-

nent system. It defines there basic abstractions of SOFA 2:

component type (called Frame), component implementation

(called Architecture), and interface type. A frame provides

black-box view of a component instance by defining its pro-

vided and required interfaces, which are defined using in-

terface type. The frame is implemented by an architecture,

which can contain subcomponents instances (defined again

by frames) and bindings among these subcomponents. If the

architecture does not have subcomponents, any component

instance defined by the frame is a primitive component the

implementation of which is to be provided in an underlying

programming language.

Via associations, the meta-model in an easy-to-

comprehend way determines (at least partially) the se-

mantics of the component model; obviously, there is a

part of the semantics that has to be defined informally

in plain English, e.g. “Frame is a component type”.



In addition to the classes and associations, relations can

be more precisely defined by constraints added to the

classes and associations. These constraints are typically

expressed by OCL (Object Constraint Language). A par-

ticular constraint in the SOFA 2 core might be, for ex-

ample: self.subcomponent->forAll(s1,s2 |

s1.name<>s2.name), meaning that the names of sub-

components in the architecture determined by self have to

be distinct.

To summarize, meta-model and constraints provide a

complex, but simple to use and understand, standard means

for expressing both the abstractions of a component model

and also their semantics in a formal way. On the contrary,

a component system defined by ADL requires its semantics

to be defined mostly in plain English and is thus more likely

ambiguity and error prone.

3.2 Infrastructure creation

Second, and even more important advantage of meta-

modeling approach is the simple creation of the infrastruc-

ture (tools) for component development. As we already

noted, the tools are crucial for a successful adoption of a

component system (below we assume that is base on a com-

ponent model CM).

Once the meta-model CMM of CM has been defined,

it is very easy to create the following development infras-

tructure tools. First, the repository storing designed com-

ponents (i.e. instance of CM) can be generated completely

automatically. This is one of the main functionalities pro-

vided by MOF. Another “for-free” obtained functionality is

the option to interchange data among such repositories in

the XMI format.

Furthermore EMF can automatically generate a semi-

visual editor for CM. The editor is very simple but it en-

forces maintaining the relations among abstraction by al-

lowing to create and connect only correct elements in the

way compliant with the meta-model of CM.

Moreover, an EMF extension GMF can generate a more

sophisticated visual editor for CM. In addition to CMM, the

developer specifies the style of visual representation of each

abstraction (element), and then the most of the editor is au-

tomatically generated as an Eclipse plugin (the plugin can

be launched as a part of the Eclipse IDE, or configured to

run as standalone application built over the core of Eclipse).

There are still functionalities that have to be designed and

developed by hand (like connections to the repositories), but

the visual part of the editor is fully generated.

Another contribution to development infrastructure cre-

ation is the potentially easy interoperability between com-

ponent systems. As the component definitions are stored

in the generated repositories and a repository can export

these definitions in XMI, a transformation between com-

ponent models CM1 and CM2 can be done very easily, as-

suming they are based on similar abstractions. This way,

e.g., a component designed for CM1 can be transformed and

reused in CM2. Moreover, OMG already provides a stan-

dardized language called QVT (Query-View-Transform)

[18] for performing queries in and transformations on mod-

els. QVT by itself does not automatically transform com-

ponent definitions, but it provides means for an easy and

standardized definition of a transformation.

3.3 Creation of runtime management
tools

In a similar way as the tools for component development,

tools for runtime management can be generated. This is par-

ticularly important for a component system which allows

creating distributed application, where it is necessary to de-

ploy component instances into particular run-time nodes.

Again, to define deployment environment model EM

(based on abstractions for e.g. set of hardware nodes,

their interconnections, their properties like current load and

memory usage), a meta-model EMM has to be defined.

Then a repository can be generated from it and for instance

used by (i) an environment monitoring tool which feeds the

repository with the current status of the environment (cur-

rent instance of EM), by (ii) a deployment tool which based

on the requirements of the deployed application and the cur-

rent environment status (current instance of EM) creates de-

ployment plan, and by (iii) a GMF visualization tool helping

to observe the current status of the environment. Moreover,

EMM can include a meta-model of deployment descriptor

to allow an automated generation of an EMF/GMF editor.

And again as in the case of development tools, having

EMM yields the benefit of achieving relatively easily de-

ployment interoperability among the component systems

based on similar abstractions.

4 Evaluation and related work

Evaluation. In essence, we have so far argued that with

the MOF-based meta-models the designers and developers

of a component system can focus mainly on the definition of

a component model, its abstractions, relations, etc., and the

“boring” parts of the implementation can be automatically

generated. To justify our claims about the advantages of

MOF-based meta-models, we present a brief comparison of

two version of the SOFA component system: the original

one (further “old SOFA”) defined by ADL, and the new one

(SOFA 2) defined by a meta-model. Basically, this section

is a substantial extension of the comparison we published in

[13], where we focus only on the process of implementing

repositories.



As described in Section 2.2, old SOFA was specified

by a definition of its ADL, which had a CORBA IDL —

like structure, with constructs added for describing compo-

nent types and implementations (architectures). The other

necessary descriptors (like deployment descriptor) had also

a proprietary structure. The repository for storing all the

old SOFA model elements was developed completely by

hand. As mentioned in [13], the development of the repos-

itory took approximately four person-months. A significant

amount of additional time was spent on debugging the im-

plementation. The semantics of the component model was

defined only by description in plain English. As SOFA

evolved and new features were added, each of such addi-

tions and/or changes (e.g. the introduction of software con-

nectors for communication among components) required

hand-made changes in the implementation of the repository

and also of all related tools, and again took rather nontrivial

amount of time for debugging.

On the contrary in the case of SOFA 2 — based on expe-

rience gained during development and usage of old SOFA

— the ADL-based definition of the component model has

been replaced by an EMF-based meta-model. Currently,

all the SOFA 2 semantics which could not be expressed

via EMF is specified in plain English. Applying OCL con-

straints is left as a near-future work.

With the aim to emphasize the positive experience with

semi-automated generations of the SOFA 2 development

and deployment supporting tools from the EMF-based

meta-model, we provide below a brief overview of the

gained benefits:

(1) Component repository — its development took only

one person-month and most of the time was spent on de-

signing and tuning the meta-model and the actual repository

was generated within few seconds (only the layer providing

remote access to the repository was written by hand).

(2) For developing SOFA 2 components, a GMF-based

visual tool proved to be essential. Naturally, the core part

of the tool is generated from the meta-model. The com-

ponents developed by the tool are directly stored into the

repository. As an aside, developing components via ADL

is still possible, but this is intended as a supplementary op-

tion (it was employed during the initial stages of the SOFA

2 development when the visual tool was not ready). Nev-

ertheless, since ADL can be interpreted as another SOFA2

meta-model, particular frame and architecture specification

in ADL (model instances) are transformed via XSLT and

then directly fed into the repository. An intention is to ap-

ply QVT (Sect. 3.2) for this purpose in the future.

(3) As to runtime management tools, an EMF-based

meta-model of the deployment plan was designed and via

GMF a corresponding visual editor was generated. Even

though additional tools featuring the functionality men-

tioned in Section 3.3 will be subject to future work, the flex-

ibility gained by the existence of the meta-model in terms

of generating these tools is incomparable with the ad hoc

formed, hard-to-maintain deployment supporting tools of

old SOFA.

In addition to automated generation of the supporting

tools mentioned above, we identified the following im-

provements of the meta-modeling approach in SOFA 2 over

the “classical way” the old SOFA was designed.

(i) The key advantage we very much appreciate has been

the lucidity of the meta-model allowing to immediately see

the context and consequences of a proposed modification;

this very much helps with achieving and maintaining the

component model consistency.

(ii) Most of the changes to the SOFA 2 component model

mean only updating the meta-model and then a regeneration

of the repository (and other tools).

(iii) The definition of the meta-model significantly re-

duces the time required to understand the SOFA 2 compo-

nent model; usually it is sufficient only to show the meta-

model to a person familiar with commonly CBD used con-

cepts and, because SOFA 2 uses those as well, he/she im-

mediately understands details of the SOFA 2 component

model. This proved to be quite important and beneficial

during our participation in a joint project [23] while sharing

details on SOFA 2 with our partners

(iv) As to transformation between component models,

we have done a simple Fractal ADL to SOFA2 ADL

transformation based on the XSLT format. This way, we

achieved relatively easily the reuse of several Fractal com-

ponents, developed for the CoCoME contest application [5],

in the SOFA 2 version of the contest application [6]. Once

a Fractal meta-model is available (see below), a QVT-based

transformation could be created for this purpose.

As the only potential disadvantage we see the fact that

the repository interface is generic and, therefore, less intu-

itive than a single purpose, hand-written one [13]. On the

other hand, the generic interface following standards can

bee seen as an advantage, since the generic clients for the

repository available elsewhere can be reused.

Overall, compared to old SOFA, the definition of the

SOFA 2 meta-model in EMF was a big step forward, in

terms of the component model design and specification, im-

plementation of supporting development tools, and deploy-

ment environment design.

Related work. To our knowledge, few contemporary

component systems have been defined by a MOF-based

meta-model. One of them is the Palladio component model

[3]. The model is completely defined in an EMF-based

meta-model. Also all the tools for defining and compos-

ing components at the architecture level and also the sim-

ulation tools are generated with the help of GMF. Another

one is the PRISMA component system [21], which core is

also described using EMF and development tools are again



generated. The component model of Fractal [4] is primarily

defined by Java API with semantics description in plain En-

glish (Section 2.2). Recently, initiatives to design a meta-

model of Fractal were announced with the aim to exploit

potential benefits (an initial version of the meta-model and

tools can be already found in the Fractal SVN [12]).

Also outside the software components community,

strong tendencies to move to the meta-model-based defini-

tion can be currently witnessed. First, there is a bunch of

MDA-based frameworks for developing applications. An

example of such a framework is AndroMDA [1]. Another

approach of employing meta-models is used in Software

Factories (SF) [11]. For specifying meta-models and DSLs,

SF do not use specifically MOF, but the overall approach is

similar. A similar functionality is provided by openArchi-

tectureWare [20]. It is a modular MDA/MDD framework

built with help of EMF.

5 Conclusion

In this paper, based on our experience gained while de-

signing and developing the component systems SOFA and

SOFA 2 and also participating in the Q-ImPrESS interna-

tional project, we discussed and presented the power of

MOF-based models and meta-models applied in design-

ing component systems. We argued that its usage signif-

icantly reduces the time necessary to develop supporting

tools. Advantageously, since the interfaces of these tools

follow standards, it is much more easy to provide interoper-

ability among different component systems and their tools.

The key advantage we experienced and appreciated was the

lucidity of the meta-model, allowing to immediately see the

context and consequences of any proposed modification;

this very much helps with achieving and maintaining the

component model consistency. This is mostly because the

meta-model formally in an easy-to-read and comprehend

way defines the semantic relations among the component

model abstractions — in many cases no additional descrip-

tion in plain English is required.

References

[1] Allen, R.: A Formal Approach to Software Archi-

tecture, PhD thesis, School of Computer Science,

Carnegie Mellon University, 1997

[2] AndroMDA, http://galaxy.andromda.org/

[3] Becker, S., Koziolek, H., Reussner, R.: Model-Based

Performance Prediction with the Palladio Component

Model, Proc. of WASP 2007, Buenos Aires, Ar-

gentina, Feb 2007

[4] Brunneton, E., Coupaye, T., Stefani, J.B.: Recur-

sive and Dynamic Software Composition with Shar-

ing, Proc. of WCOP’02, Malaga, Spain, Jun 2002

[5] Bulej, L., Bures, T., Coupaye, T., Decky, M., Jezek,

P., Parizek, P., Plasil, F., Poch, T., Rivierre, N., Sery,

O., Tuma, P.: CoCoME in Fractal, Chapter in The

Common Component Modeling Example: Comparing

Software Component Models, LNCS, Apr 2008

[6] Bures, T., Decky, M., Hnetynka, P., Kofron, J.,

Parizek, P., Plasil, F., Poch, T., Sery, O., Tuma, P.: Co-

CoME in SOFA, Chapter in The Common Component

Modeling Example: Comparing Software Component

Models, LNCS, 2008

[7] Bures, T., Hnetynka, P., Plasil, F.: SOFA 2.0: Balanc-

ing Advanced Features in a Hierarchical Component

Model, Proc. of SERA 2006, Seattle, USA, IEEE CS,

Aug 2006

[8] Eclipse Modeling Framework, http://eclipse.

org/emf

[9] Garlan, D., Monroe, R. T., Wile, D.: Acme: Archi-

tectural Description of Component-based systems, In

Foundation of Component-based Systems, Cambridge

Univ. Press, 2000

[10] Graphical Modeling Framework, http:

//eclipse.org/gmf

[11] Greenfield, J., Short, K., Cook, S., Kent, S.: Software

factories: assembling applications with patterns, mod-

els, frameworks and tools, Wiley publishing, 2004

[12] Fractal website, http://fractal.ow2.org/

[13] Hnetynka, P., Pise, M.: Hand-written vs. MOF-based

Metadata Repositories: The SOFA Experience, Proc.

of ECBS’04, Brno, Czech Rep., IEEE CS, May 2004

[14] Magee, J., Kramer, J.: Dynamic Structure in Software

Architectures, Proc. of FSE’4, San Francisco, USA,

Oct 1996

[15] OMG: CORBA Components, v 3.0, formal/02-06-65,

Jun 2002

[16] OMG: Model Driven Architecture (MDA), ormsc/01-

07-01, Jul 2001

[17] OMG: MOF 2.0 Core, ptc/03-10-04, Oct 2004

[18] OMG, MOF QVT, ptc/07-07-07, Jul 2007

[19] van Ommering, R., van der Linden, F., Kramer, J.,

Magee, J.: The Koala Component Model for Con-

sumer Electronics Software, IEEE Computer, Vol. 33,

No. 3, pp. 78-85, Mar 2000

[20] OpenArchitectureWare, http://www.

openarchitectureware.org/

[21] Perez, J., Ali, N., Carsi, J. A., Ramos, I.: Designing

Software Architectures with an Aspect-Oriented Ar-

chitecture Description Language, Proc. of CBSE’06,

Vasteras, Sweden

[22] Plasil, F., Balek, D., Janecek, R.: SOFA/DCUP: Ar-

chitecture for Component Trading and Dynamic Up-

dating, Proc. of ICCDS’98, Annapolis, USA, May

1998

[23] Q-ImPrESS, http://www.q-impress.eu/


