

Department of Distributed and Dependable Systems
Technical Report no. D3S-TR-2012-07
December 2012

Towards a “Periodic Table of Component Models”

Tomáš Bureš, Petr Hnětynka, Jaroslav Keznikl, František Plášil, Petr Tůma

Abstract: When applying model-driven architecture to component models, a significant issue is
to address challenges such as component architecture transformation, compositional
consistency analysis, and component code synthesis in a reusable way. Mostly, this is due to the
substantial differences among abstractions of component models. As a remedy, the paper
presents Periodic Table of Component Models (PTOCM), a novel method for defining (abstract)
component meta-models. The key idea is to introduce orthogonal dimensions of variability
among the component models with respect to composition, grouping models into component
model families. Each family is associated with a rigorously-defined abstract meta-model. PTOCM
allows for providing a standardized meta-model skeleton for a component model, avoiding
pitfalls when designing a component model, and defining generic transformations of component
architectures.

This work was partially supported by the Grant Agency of the Czech Republic project P202/11/0312.

D3S Technical Report no. D3S-TR-2012-07 CONTENTS

1

Contents

1 Introduction ... 2

1.1 Motivation and Problem Statement ... 2

1.2 Goals and Overview of Contribution ... 3

2 Dimensions of compositional variability ... 4

3 Defining abstract meta-models (AMMs) ... 5

3.1 Common concepts ... 8

3.2 Component abstraction level .. 9

3.3 Vertical composition ... 11

3.4 Horizontal composition ... 14

3.5 Communication styles ... 16

3.5.1 Method-call ... 16

3.5.2 Asynchronous messaging ... 21

3.5.3 Streaming .. 22

3.5.4 Blackboard .. 22

3.5.5 Connectors .. 22

3.6 AMM: Eliminating Abstract Concepts ... 23

4 Discussion .. 25

4.1 Choice of dimensions .. 25

4.2 Benefits of PTOCM .. 25

4.3 Prospective research directions .. 27

5 Related work ... 29

6 Conclusion ... 30

Bibliography ... 30

Appendix A .. 32

Appendix B .. 35

D3S Technical Report no. D3S-TR-2012-07

2

1 Introduction
Over the years, the idea of building software from well-defined components – component-based

development (CBD) [1], [2] – has been reified by a number of component models, such as

OSGi [3], iPOJO [4], CCM [5], Fractal [6], SOFA2 [7], DEECo [8], AUTOSAR [9], and ProCom [10].

Although the fundamental principles are preserved in all component models (such as that a

component is encapsulated and communicates only via its well defined provided/required

interfaces), there are significant differences even among the basic properties of the individual

component models. This is particularly the case of component composition, which is one of the

key features characterizing component models [1]. For example, some models (e.g., SOFA2)

employ hierarchical vertical composition, whereas others (e.g., OSGi) employ flat composition.

Modern component model design employs the idea of model-driven architecture (MDA) [11],

[12] and model-driven development (MDD) [13], describing a component model by means of its

meta-model. By rigorously capturing the conceptual properties of components, their

composition, deployment, etc., the meta-model provides a solid base for solving a number of

challenges, such as composition consistency analysis and component code synthesis. However,

due to the diversity of component models (significantly manifested in the rigorous

representation via meta-models), a broader reuse of solutions to these challenges is a problem.

1.1 Motivation and Problem Statement
A good example of employing meta-models in the area of software components is the OMG D&C

specification [14], which defines a Platform-Independent Model (PIM) – a meta-model capturing

the metadata required for describing deployment and configuration requirements of

component-based applications. In this specification, a mapping of PIM to CCM [5], i.e., a

Platform-Specific Model (PSM), is provided to illustrate how the deployment and configuration

requirements are to be interpreted in CCM.

Nevertheless, being designed to be primarily mapped to CCM, PIM itself does not provide any

indications of the range of other component models, for which the mapping would be

applicable. The reader is only left to assume that the specification should be applicable for

component models similar enough to CCM. However, an exact interpretation of “similar enough”

remains up to the reader.

Another example of applying meta-modeling in component model definition is the Fractal

component meta-model which specifies components and the operations upon them in a

platform independent manner. It is then reified in a number of platform specific Fractal

“implementations” created for several programming languages, middleware and application

concerns – e.g. FraSCAti [15] (implementation focused on SCA [16]), THINK [17] (C-language

components for embedded systems), Soleil [18] (components for developing real-time Java

application). Nevertheless, the meta-model specification does not bind the basic properties (e.g.

compositional rules, communication styles) of the component models derived as Fractal

implementations. This deficiency in the specification becomes a limiting factor in developing

generic Fractal tool-sets [19] (e.g., graphical component architecture designer FractalGUI and

behavior checker FractalBPC), since these tools typically require meeting certain assumptions

about composition rules, execution model, etc. Consequently, it remains unclear which of the

D3S Technical Report no. D3S-TR-2012-07

3

Fractal tools may well work with a particular Fractal implementation (although most of them

rely on the same architecture definition language – FractalADL).

In a similar vein, the EU FP7 project Q-Impress introduced a platform independent component

model [20] (called SAM) acting as a bridge between the component models and analysis tools

developed by the project partners. Naturally, SAM was designed to be close enough to the

component models of the partners. Still, there was no explicit guidance to estimate which

component models will be actually straightforward to use with SAM and which may need more

complex bridging. Similar weaknesses can be found in other projects where assets of different

partners are to be combined into a common solution.

To summarize, although MDA allows for benefiting from platform independent abstractions of a

component model, it reaches its limits by not establishing any relation between the PIM and

PSM structures. In other words, it gives neither guidance, nor restrictions as to how to refine the

PIM meta-model into a particular PSM meta-model. Thus, a challenge is to define a solid base

for defining a PIM in a way that explicitly identifies the concrete component models, for which

the mapping from PIM is “similar” (and determines to which extent).

1.2 Goals and Overview of Contribution
In response to this challenge, we identify and describe the common properties of contemporary

component models, with respect to composition in particular (since this is a key property of

component models [1]). We do so by identifying orthogonal dimensions of variability among the

component models and describe their taxonomy along these dimensions, grouping the models

into component model families (CM-families for short). A CM-family is a set of the concrete

models that are in the taxonomy assigned the same valuation of the dimensions.

For each family we define a unique abstract component model (by means of its abstract meta-

model – AMM for short), which captures the common properties of the component models in

the CM-family. Moreover, we assume that there exists a homomorphism of the AMM to each CM-

family member’s meta-model (CMM for short). For example, using such AMM as the PIM-meta-

model in OMG D&C would enable a straightforward characterization of the concrete component

models, to which the mapping of PIM is similar.

In summary, based on the taxonomy, such an abstract component model (its meta-model in

particular) provides a standardized view of the concrete component models in the

corresponding CM-family. Leveraging on the common properties of sets of CM-families with the

same valuation of a particular dimension, we define AMMs in a compositional (and automated)

manner. Specifically, we construct AMMs by applying relevant rules. Each rule is relevant to a

partial valuation across the dimensions and expresses the common properties of the CM-

families with this valuation.

By introducing the orthogonal dimensions of variability, as an important theoretical

contribution of the paper, we describe the whole potential space of component models – not

only the existing ones, but specifically also those that have no concrete representative to date.

This allows exploration of the limits of component models and also facilitates the use of existing

concepts in an innovative way. Our approach might resemble the periodic table of chemical

elements, since it allows the prediction of not-yet-found component models along with their

properties. Therefore we call it “Periodic Table Of Component Models” (PTOCM).

D3S Technical Report no. D3S-TR-2012-07

4

To summarize, the goal of the paper is to:

 introduce a taxonomy of CM-families allowing us to come up with a method for

providing unified/standardized AMMs relevant to CM-families

 describe the whole potential space of component models with respect to composition

 analyze the benefits and draw future research directions

These goals are reflected in the remainder of the text as follows. Section 2 introduces the

dimension of compositional variability of component models. The main part of the paper,

Section 3, presents details on AMM definition in a composable way, following the dimensions.

Finally, Section 4 discusses the choice of dimensions, summarizes the benefits of PTOCM, and

suggests prospective research directions. The paper is concluded by a short overview of related

work in Section 5.

2 Dimensions of compositional variability
In this section we define four orthogonal dimensions that allow us to categorize component

models with respect to composition at the design time. Based on our experience and by

considering a number of component models, such as OSGi [3], iPOJO [4], CCM [5], Fractal [6],

SOFA2 [7], DEECo [8], AUTOSAR [9], and ProCom [10], we have identified four fundamental

dimensions that capture the observed variations in composition and the values (archetypes) in

each dimension. These dimensions and their archetypes are:

Component abstraction level (0 x 1 x 2). This dimension reflects the level of component

abstractions employed by the component model. We distinguish here: level 0,

characterizing the models featuring only the concept of component instance, where each

instance is a separately-specified singleton (e.g., OSGi); level 1, corresponding to models

that distinguish component instance and component template as two separate concepts,

where a component template represents a prescription for component instances, allowing

instantiation of multiple component instances according to a single specification in the

form of a component template and thus facilitating reuse (e.g., iPOJO and Fractal); and

level 2, which in addition to component instance and component template distinguishes

also the concept of component type as an abstraction of component template, thus forming

a 2-level hierarchy of component type – component template – component instance. The

concepts of component type and component template are in the context of level 2 often

called black-box resp. gray-box view of a component [7]. An important advantage of the

level-2 models is that they provide the highest variability in forming component

architectures (further elaborated in Section 3.2); this is essential, for example, in

specifying product-lines. SOFA2 is an example of a level-2 model.

Vertical composition (None x Hierarchical). This dimension determines the possibility

of component nesting. The models with no vertical composition (i.e. flat models) do not

provide architectural options for component nesting, while the hierarchical ones allow for

defining hierarchical architectures. An example of a flat model is OSGi, and as examples of

hierarchical ones iPOJO and Fractal can serve.

D3S Technical Report no. D3S-TR-2012-07

5

Horizontal composition (Implicit x Explicit). This dimension determines whether the

bindings in the component model are (i) defined explicitly by architecture, or if they are

(ii) described implicitly by stating only interface types along with filters and attributes –

the bindings are then established based on matching the interfaces of currently deployed

components. Examples of models with the explicit horizontal composition are Fractal and

SOFA2, while OSGi and iPOJO serve as examples of the implicit composition.

Communication styles (Fixed x Connectors). This dimension determines whether the

component model assumes a particular fixed set of communication styles or whether it

abstracts communication styles via connectors. In the former case, we consider four main

communication styles [21]: Method-call, Asynchronous messaging, Streaming, and

Blackboard. (However, this list may be extended without affecting other dimensions.) An

example here is Fractal (supporting only method-call) or CCM (which supports method-

call and asynchronous messaging). In the latter case, connector is used as a design-time

abstraction that encapsulates and hides the specifics of particular communication styles.

SOFA2 serves as an example of a component model employing connectors.

The composition features of a particular concrete component model can be now described by

selecting a single archetype from each dimension. In fact, we define component model families

this way as all component models that have a particular selection of archetypes. To denote a

CM-family, we use a four-letter acronym composed of first letter of the archetype name chosen

for each dimension – e.g. None or Hierarchical for the vertical composition, etc. Specifically for

denoting selection of the fixed communication styles, we use the initial letters of the

communication styles written in superscript – e.g. FMA denotes the fixed communication styles

method-call and asynchronous messaging.

For example HEFM1 denotes the family of hierarchical component models with an explicit

architecture, method-call communication style and component abstraction level 1. As for the

concrete component models, we mentioned in Section 1, their classification would be as follows:

OSGi – NIFM0, iPOJO – HIFM1, Fractal – HEFM1, CCM and AUTOSAR – HEFMA1, SOFA2 – HEC2, etc.

Obviously these examples do not cover all the potential space of component models; in

Section 4.3 we provide a related discussion on prospective component models (not having been

realized yet).

For describing a set of component families, we use an asterisk (*) to denote that other

dimensions are not considered. For instance **C* denotes all the component families that

employ connectors.

3 Defining abstract meta-models (AMMs)
In this section, we define for each CM-family its abstract meta-model (AMM). The aim is to let

AMM feature only those concepts that are relevant for composition. Other concepts (e.g. non-

functional properties, behavior, deployment information) are intentionally omitted. As such, an

AMM forms the core of the existing concrete component models belonging to the corresponding

CM-family.

As usual in such cases, we use a meta-model based on OMG’s MOF [22] to describe the structure

of a particular abstract component model (Figure 1). Specifically, we use a subset of MOF to

D3S Technical Report no. D3S-TR-2012-07

6

define the meta model as a set of classes; each class is defined by its (i) name, (ii) attributes, (iii)

composite associations, and (iv) associations. The semantics of each of the classes is described

textually.

Figure 1 Example of a AMM fragment

Technically, in terms of MOF, an attribute corresponds to an instance of the MOF class Property

with a primitive type; a composite association to an instance of the MOF class Property with the

aggregation kind set to composite, and an association to an instance of the MOF class Property

with the aggregation kind set to none.

Since all the combinations of the archetypes in the four dimensions yield 192 different AMMs, it

would be unfeasible to describe each of them individually. As a remedy, we provide a

compositional method for defining an AMM by applying the inference rules defined in Table 1.

Table 1 Production rules for AMM definition.

 Addition of Rule Semantics

cl
a

ss

class with
attributes

+ class C{aList} A class C with the list of attributes aList is added to
AMM.

abstract class + class abstract AC An abstract class AC is added to AMM.
sub-class + class C{...} refines P A (concrete or abstract) class C, which refines the

class P, is added to AMM.

g
en

er
a

li
za

ti
o

n
 class

generalization
+ gener C -> T A generalization of the (existing) class C by the

(existing) class T is added to AMM.
relational
generalization

+ gener A.a -> B.b A generalization of the association a of the class A
by the association b of the class B is added to AMM
(in other words B.b is a specialization of A.a).

a
ss

o
ci

a
ti

o
n

association + assoc C.a: T[I] An association a with the (existing) target class T
and cardinality I is added to the (existing) class C
in AMM.

abstract
association

+ assoc abstract C.a: T[I] An abstract association is added.

association
refinement

+ assoc C.a: T[I]
 refines B.b

An association a refining the composite association
b of class B is added to the class C. For this rule to
be applicable C has to refine/equal B and T has to
refine/equal the target of B.b.

co
m

p
o

si
te

 a
ss

o
ci

a
ti

o
n

 composite
association

+ compo C.ca: T[I] A composite association ca with the (existing)
target class T and cardinality I is added to the
(existing) class C in AMM.

abstract
composite
association

+ compo abstract C.ca: T[I] An abstract composite association is added.

composite
association
refinement

+ compo C.ca: T[I]
 refines B.ba

A composite association ca refining the composite
association ba of class B is added to the class C. For
this rule to be applicable C has to refine/equal B
and T has to refine/equal the target of B.ba.

 attribute + attri C.a An attribute a is added to the (already existing)
class C in AMM.

+abc: String

A

<<abstract>>
B

*def

 0..1

ghi

<<abstract>>

context B inv:

ghi.abc = ‘ABC’
C

0..1 jkl

D3S Technical Report no. D3S-TR-2012-07

7

 OCL constraint + ocl c An OCL constraint c is added in AMM (where c is a
string representation of the constraint employing
the standard OCL syntax).

To denote what rules should be applied when defining a particular AMM, we use the notation

CM-family identifiers. For example, the AMM fragment shown in Figure 1 will be is generated for

all model families (denoted by ****) by the set of rules in Figure 2.

Figure 2 Example of rules that define the AMM fragment in Figure 1.

Note that while illustrating the individual variants of AMMs in figures, we will draw the

concepts related to the already-discussed dimensions by gray color.

3.1 Common concepts
All CM-families are based on the common concept of component instance (class

ComponentInstance, Figure 3). By adding attributes and associations, this concept is further

extended via the inference rules specific to a particular CM-family. Semantically, in addition to

encapsulated functionality, a component instance communicates with the other component

instances determined via horizontal and vertical composition.

Figure 3 Common concepts in AMMs

The component endpoints of the component instance are represented by the abstract

CommunicationEndpoint class, which generalizes all the communication-style specific endpoints

introduced later (Section 3.5) such as the provided/required interfaces and blackboard ports.

Although, in general, a component’s endpoints correspond to the component’s instance, the

AMM class defining the actual composite association is determined by the actual component

abstraction level. Thus, the defining class for component endpoints is abstracted into the

EndpointHolder class and its refinement depending on the component abstraction level is

discussed further in Section 3.2.

The inference rules for the common concepts are defined in Figure 4.

Figure 4 Common concepts

3.2 Component abstraction level
In the CM-families with component abstraction level 0 (***0), components are only singleton

instances, represented in AMM via the class ComponentInstance, thus component instance also

+name: String

ComponentInstance EndpointHolder

<<abstract>>

+name: String

ComponentEndpoint

<<abstract>>

*

endpoints

<<abstract>>

(0) **** :
+ class abstract A{abc}
+ class B{}
+ compo A.def: B[*]
+ assoc abstract B.ghi: A[0..1]
+ class C{} refines A
+ assoc B. jkl : A[0..1] refines B.ghi
+ ocl context B inv : ÇÈÉƚÁÂÃ ˮ ƥ!"#Ʀ

/* Common concepts for all families */
(1) **** :

+ class ComponentInstance {name}
+ class abstract CommunicationEndpoint{name}
+ class abstract EndpointHolder{ }
+ compo EndpointHolder.endpoints: ComponentEndpoint[*]

D3S Technical Report no. D3S-TR-2012-07

8

defines component endpoints – denoted by specialization of the abstract EndpointHolder class

(Figure 5.a).

In the case of level 1 (***1), component instances are explicitly distinguished from their

prescription in the form of component templates, represented in AMM by the ComponentTemplate

class associated with ComponentInstance via template (Figure 5.b). This distinction allows

instantiating multiple instances of the same component template. A component template also

defines component endpoints, represented in AMM by specialization of the abstract

EndpointHolder class. The specifics of an instance with respect to its template are expressed by

means of attributes (Attribute class).

In the case of level 2 (***2), component type is introduced as a first class concept as an

abstraction of component template, captured in AMM by the class ComponentType (Figure 5.c). In

general, a component type defines the outer boundary (interface) of the abstracted component

template; i.e., it primarily defines the component’s endpoints, reflected in AMM by specialization

of the abstract EndpointHolder class and association of ComponentTemplate with the ComponentType it

refines by means of refinedType. Thus, in principle, a component instance is specified either

directly by its associated component template or indirectly by a component type. In the latter

case, since the component type can be refined by several component templates, there can be

several variants of component templates for the component instance. Allowing for variability in

the component architecture design, this is reflected in AMM by the non-compulsory associations

template and type and by the related OCL constraint enforcing that exactly one of these

alternatives has to be employed. Although choosing a concrete component template is necessary

for an actual component instantiation, this necessity is not explicitly expressed in AMM (the

choice is typically postponed to the deployment phase).

(a) (b) (c)

Figure 5 AMM structure specific to ***0 (a) ***1 (b) and ***2 (c) CM-families

Note, that the component endpoints are always defined by the most abstracting entity; i.e. for

level 0 the defining class is the ComponentInstance class, for level 1 it is ComponentTemplate, while for

level 2 it is ComponentType.

The inference rules associated with the component abstraction level features described in this

section are in Figure 6. In principle, they state how the AMM fragments from Figure 5 are to be

created.

+name: String

ComponentInstance

EndpointHolder

<<abstract>>

+name: String

ComponentTemplate

EndpointHolder

<<abstract>>

+key: String

+value: String

Attribute

+name: String

ComponentInstance

*

attributes

1

template

+name: String

ComponentTemplate

EndpointHolder
<<abstract>>

+key: String
+value: String

Attribute

+name: String

ComponentInstance

*

attributes

0..1

 template

+name: String

ComponentType

 0..1

type

1..*
refinedType XOR

D3S Technical Report no. D3S-TR-2012-07

9

Figure 6 Rules for component abstraction levels

3.3 Vertical composition
In case of “none” vertical composition, the components do not provide any architectural option

for component nesting and thus this archetype does not need to be explicitly captured in AMM.

In case of hierarchical vertical composition, a component is either primitive – a black box – or

composite – formed by an assembly of subcomponents (being again represented via

ComponentInstance) [7]. A composite component gains the ownership of its subcomponents (also

possibly composite). In AMM, this component nesting is reflected by the composite association

subcomponents (Figure 7). However, the choice of an actual AMM class which introduces this

association depends on the actual component abstraction level and thus it is abstracted into the

SubcomponentHolder class. Depending on the actual component abstraction level, the association is

defined either directly by the component instances (component abstraction level 0, Figure 8.a),

or by component templates (component abstraction levels 1 and 2, Figure 8.b-c). As an aside,

the assembly of subcomponents is in detail captured by horizontal composition (Section 3.4).

/* Families with component abstraction level 0 */
(1) ***0:

+ gener ComponentInstance: EndpointHolder

/* Families with component abstraction level 1 or 2 */
(2) ***1, ***2 :

+ class Attribute{key, value}
+ class ComponentTemplate { name}

 + compo ComponentInstance.attributes: Attribute[*]

/* Families with component abstraction level 1 */
(3) ** * 1 :

+ assoc ComponentInstance .Template: Component[1]
 + gener ComponentTemplate : EndpointHolder

/* Families with component abstraction level 2 */
(4) ** * 2 :
 + class ComponentType{ name}
 + gener ComponentType: EndpointHolder

+ assoc ComponentTemplate.refinedType: ComponentType[1..*]
+ assoc ComponentInstance .Template: ComponentTemplate[0..1]
+ assoc ComponentInstance .type: ComponentType[0..1]
+ ocl context ComponentInstance inv : Template - >notEmpty xor type - >notEmpty

D3S Technical Report no. D3S-TR-2012-07

10

Figure 7 AMMs structure specific to H*** CM-families

(a) (b) (c)

Figure 8 Dependence of the subcomponents definition on the component abstraction level:
H**0 (a), H**1 (b), and H**2 (b) CM-families

In addition to capturing subcomponents, it is necessary to reflect delegation of component

endpoints between the adjacent levels of component hierarchy; i.e., between a composite

component and its subcomponents. Note that delegation involves only endpoints of the same

type (in the sense of oclType()); e.g., endpoints have to be both either provided or required

interfaces in case of method call communication style. Nevertheless, the semantics of delegation

is strongly influenced by the horizontal composition archetype.

For explicit horizontal composition (Figure 9), delegation is an explicit, pairwise-expressed

relation between endpoints of a composite component and its subcomponents’ endpoints,

captured in AMM via the abstract Delegation class and associations parentEndpoint, subcomponent,

and subcomponentEndpoint (subcomponent endpoint is identified using a reference to both the

ComponentEndpoint and the associated subcomponent – ComponentInstance). Each composite

component is responsible for defining the delegations among its endpoints and its

subcomponents, as expressed by the composite association delegations. The cardinality of the

delegation relation is not restricted in general; however, restriction is necessary for some

communication styles (Section 3.5). The semantics of delegation of a parent endpoint to a

subcomponent endpoint is that both endpoints behave as a single one from the view point of

the communication style. For example, in the case of asynchronous messaging, if a message is

sent via a subcomponent endpoint, it is as if it would be sent via the delegated parent endpoint.

Similarly, if a message is delivered to a parent endpoint, it is the same as if it would be delivered

to the delegated subcomponent endpoint.

For implicit horizontal composition, delegation is implicit as well, and thus not captured in

AMM. However, an actual “implicit” delegation is determined by the association with parent

component endpoints and subcomponent endpoints.

SubcomponentHolder

<<abstract>>
+name: String

ComponentInstance

*subcomponents

+name: String

ComponentInstance

SubcomponentHolder

<<abstract>>

DelegationOfEndpointsOfTheSameType
OnAdjacentHierarchyLevelsOnly0

+name: String

ComponentTemplate

SubcomponentHolder

<<abstract>>

DelegationOfEndpointsOfTheSameType
OnAdjacentHierarchyLevelsOnly1

+name: String

ComponentTemplate

SubcomponentHolder

<<abstract>>

DelegationOfEndpointsOfTheSameType
OnAdjacentHierarchyLevelsOnly2

D3S Technical Report no. D3S-TR-2012-07

11

Figure 9 AMM structure specific to HE** CM-families

The inference rules defining the vertical composition are given below. Note that for “none”

vertical composition, no dedicated inference rules are necessary.

The inference rules associated with vertical composition are in Figure 10. In principle, they state

how the AMM fragments from Figure 8 and Figure 9 are to be created.

SubcomponentHolder

<<abstract>>

1

parentEndpoint

<<abstract>>

*

delegations

<<abstract>>

1

subcomponentEndpoint

<<abstract>>

+name: String

ComponentEndpoint

<<abstract>>

+name: String

ComponentInstance

 1
subcomponent

*subcomponents

Delegation

<<abstract>>

/* Families with hierarchical vertical composition */
(1) H*** :

+ compo SubcomponentHolder .subcomponents: Component Instance [*]

(2) HE** :

+ class abstract Delegation {}
+ compo abstract SubcomponentHolder . delegations : Delegation [*]
+ assoc abstract Delegation .parentEndpoint: ComponentEndpoint[1]
+ assoc abstract Delegation .subcomponentEndpoint: ComponentEndpoint[1]
+ assoc Delegation .subcomponent: ComponentInstance[1]

(3) H** 0 :
+ gener ComponentIntstance : SubcomponentHolder

(4) HE* 0 :
+ ocl DelegationOfEndpointsOfTheSameTypeOnAdjacentHierarchyLevelsOnly 0
 context ComponentInstance inv :

endpoints - >includes (delegations.parentEndpoint)
and
subcomponents.endpoints - >includes (
 delegations.subcomponentEndpoint)
and
delegations - >forAll (d : Delegation | d.subcomponentEndpoint. oclType () = d.parentEndpoint. oclType ())

(5) H** 1 :

+ gener ComponentTemplate: SubcomponentHolder
(6) HE* 1 :

+ ocl DelegationOfEndpointsOfTheSameTypeOnAdjacentHierarchyLevelsOnly 1
 context ComponentTemplate inv :

endpoints - >includes (delegations.parentEndpoint)
and
subcomponents. template .endpoints - >includes (

delegations.subcomponentEndpoint)
and
delegations - >forAll (d : Delegation | d.subcomponentEndpoint. oclType () = d.parentEndpoint. oclType ())

(7) H** 2 :

+ gener ComponentTemplate: SubcomponentHolder
(8) HE* 2 :

+ compo ComponentTemplate.delegations: Delegation[*]
+ ocl DelegationOfEndpointsOfTheSameTypeOnAdjacentHierarchyLevelsOnly 2
 context ComponentTemplate inv :

refinedType.endpoints - >includes (delegations.parentEndpoint)
and
subcomponents. template .refinedType.endpoints
 - >union (subcomponents. type .endpoints)
 - >includes (delegations.subcomponentEndpoint)
and
delegations - >forAll (d : Delegation | d.subcomponentEndpoint. oclType () = d.parentEndpoint. oclType ())

D3S Technical Report no. D3S-TR-2012-07

12

Figure 10 Rules for families with hierarchical vertical composition

3.4 Horizontal composition
Horizontal composition takes two fundamental forms – explicit and implicit. Generally speaking,

the main distinction is that the former (Figure 11) explicitly defines component bindings, while

the latter (Figure 12) uses implicit rules for establishing bindings among endpoints based on

various endpoint binding constraints.

In the case of explicit horizontal composition, the explicit component bindings are reflected in

AMM via the Binding class. It captures the endpoints participating in a binding. Since in general a

single component endpoint can be employed multiple-times in a single binding, the

participating endpoints are captured indirectly via the BindingEndpoint class (associated with a

binding via bindingEndpoints), which captures a single occurrence of a component endpoint

participating in the binding. The particular form of BindingEndpoint depends on the component

abstraction level. For component abstraction level 0, as component endpoints are unique for

each component instance, the participating endpoints are identified directly, via the

endpointInBinding association (Figure 11.a). For the component abstraction levels 1 and 2, as the

representation of a single component endpoint is shared among multiple instances (embodied

by the component template in the former case and by the component type in the latter), the

participating endpoints are identified both by a reference to their representation – the

endpointInBinding association – and a reference to a particular component instance featuring the

endpoint – the endpointOwner association (Figure 11.b). When considering a combination with

hierarchical vertical composition, the bindings are to be defined for each level of the hierarchy

separately; i.e., each composite component individually defines the bindings among its

subcomponents. This is reflected in AMM by the bindings composite association and the

BindingsAmongSubcomponentsOnly OCL constraint (Figure 11.c). Note, that there are slight

differences in the definition of this OCL constraint depending on the component abstraction

level archetype (Figure 13).

(a) (b) (c)

Figure 11 AMM structure specific to *E*0 (a), *E*1/2 (b), and HE** (c) CM-families

As for implicit horizontal composition, the bindings are determined implicitly – by applying

binding rules that are based on various endpoint binding constraints, i.e. conditions which have

to be met in order to establish a binding among the related endpoints. Such constraints are

specific to a particular communication style (e.g., a required name of a message topic for

asynchronous messaging) and, therefore, abstracted via the EndpointBindingConstraint class (Figure

+name: String

ComponentEndpoint

<<abstract>>

1

endpointInBinding

<<abstract>>

BindingEndpoint

<<abstract>>

Binding

<<abstract>>

*

bindingEndpoints

<<abstract>>

+name: String

ComponentEndpoint

<<abstract>>

 1

endpointInBinding

<<abstract>>

BindingEndpoint

<<abstract>>

+name: String

ComponentInstance

1

endpointOwner

<<abstract>>

Binding

<<abstract>>

*

bindingEndpoints

<<abstract>>

Binding
<<abstract>>

SubcomponentHolder
<<abstract>>

*

bindings
<<abstract>>

BindingsAmongSubcomponentsOnly

D3S Technical Report no. D3S-TR-2012-07

13

12). Depending on the component abstraction level, there are two variants of how these binding

constraints are associated with a component endpoint. For component abstraction levels 0 and

1, a component endpoint itself defines the related binding constraints (the bindingConstraints

composite association in Figure 12.a). For component abstraction level 2, even though an

endpoint definition given by a component type serves for multiple component templates, the

binding constraints have to be specific to a particular component template. This is reflected via

the EndpointConfiguration class (associated to a component template via endpointConfigurations),

which captures a template-specific set of binding constraints associated with a particular

component endpoint (via the bindingConstraints and endpoint associations). Note, that here the

binding constraints are defined at the level of component template in order to facilitate reuse in

component instance, nevertheless, instance-specific implicit bindings are achieved by

interpreting instance attributes as specific binding constraints. Similar to explicit horizontal

composition, when considering a combination with hierarchical vertical composition, the

implicit bindings are possible only among the components on the same level of nesting. This

however considers only the semantics of the implicit binding rules and thus it is not reflected in

AMM.

(a) (b)

Figure 12 AMM structure specific to *I*0/1 (a) and *I*2 (b) CM-families

The inference rules associated with the horizontal composition features described in this

section are in Figure 13. In principle, they state how the AMM fragments from Figure 11 and

Figure 12 are to be created.

Since the horizontal composition is strongly connected with communication styles, all the so-far

introduced concepts are abstract, to be specialized for a particular communication style

(Section 3.5).

+name: String

ComponentEndpoint

<<abstract>>

EndpointBindingConstraint

<<abstract>>

 *

bindingConstraints

<<abstract>>

EndpointBindingConstraint

<<abstract>>

+name: String

ComponentEndpoint

<<abstract>>

EndpointConfiguration

<<abstract>>

 *

endpointConfigurations

<<abstract>>

*

bindingConstraints

<<abstract>>

1

endpoint

<<abstract>>

+name: String

ComponentTemplate

D3S Technical Report no. D3S-TR-2012-07

14

Figure 13 Rules for horizontal composition

3.5 Communication styles
Two options are introduced: a fixed combination of four main communication styles (i.e.

Method-call, Asynchronous messaging, Streaming, and Blackboard) [21] on one hand and the

use of connectors on the other. In the former case, the communication semantics is specific to

the particular main communication style, while in the latter case, the communication semantics

is specific to each connector and may include adaptation to allow connection of mutually

incompatible interfaces. Such a flexibility in using connectors typically requires a connector

generator (e.g., [23], [24]), which is responsible for constructing connector implementation

based on the design time specification. We focus on method call including its semantics as an

example of a predefined communication style, while giving a short overview of expressing the

other communication styles in AMMs.

3.5.1 Method-call

Method-call is a synchronous invocation of a method on a component’s endpoint initiated by

another component’s endpoint, so that a number of “client” endpoints are allowed to invoke a

single “server” endpoint simultaneously, while a single “client” endpoint can invoke only one

“server” endpoint.

/* Families explicit vertical composiiton */
(1) * E** :

+ class abstract Binding{}
+ class abstract BindingEndpoint{}
+ compo abstract Binding.bindingEndpoints: BindingEndpoint[*]
+ assoc abstract BindingEndpoint.endpointInBinding: ComponentEndpoint[1]

(2) *E* 1, *E* 2 :

+ assoc abstract BindingEndpoint.endpointOwner: Component Instance [1]
 (3) *E* 1 :

+ ocl InstanceOwnsEndpointInBinding1
 context BindingEndpoint inv :

 endpointOwner.template.endpoints - >includes (endpointInBinding)

 (4) *E* 2 :

+ ocl InstanceOwnsEndpointInBinding2
 context BindingEndpoint inv :

 endpointOwner.type.endpoints
- >union (endpointOwner.template.refinedTye.endpoints)

- >includes (endpointInBinding)
(5) HE** :

+ compo abstract SubcomponentHolder.bindings: Binding[*]
+ ocl BindingsAmongSubcomponentsOnly

 context SubcomponentHolder inv :
 subcomponents- >includes (bindings.bindingEndpoints.endpointOwner)

/* Families implicit vertical composiiton */
(6) * I ** :

+ class abstract EndpointBindingConstraint{}

(7) *I* 0, *I* 1 :

 + compo abstract ComponentEndpoint.bindingConstraints: EndpointBindingConstraint[*]

(8) *I* 2 :
 + class abstract EndpointConfiguration{}

 + compo abstract ComponentTemplate.endpointConfigurations: EndpointConfiguration[*]
 + compo abstract EndpointConfiguration.bindingConstraints: EndpointBindingConstraint[*]
 + assoc abstract EndpointConfiguration.endpoint: ComponentEndpoint[1]

D3S Technical Report no. D3S-TR-2012-07

15

(a) (b)

Figure 14 Definition of provided (a) and required interface (b) for **FM*.

The “client” and “server” endpoints are reflected in AMM via specialized component-endpoint

concepts – provided interface for the former case and required for the latter (Figure 14).

Specifically, AMM includes the ProvidedInterface and RequiredInterface classes as specializations of

ComponentEndpoint, associated with an endpoint holder via the providedInterfaces resp.

requiredInterfaces composite associations specializing endpoints. The methods of interfaces

available for invocation are abstracted via the InterfaceType class.

Figure 15 Definition of interface type for **FM*.

Method call determines the specialization of the abstract concepts in AMM related to both

horizontal and vertical composition, as described in the remainder of this section. Note, that for

both explicit and implicit horizontal composition, the binding is possible only if the provided

interface type is a refinement of the required interface type (for explicit horizontal composition,

this is captured in AMM via the ProvidedRefinesRequired OCL constraint, Figure 23).

As for the explicit horizontal composition, the explicit bindings employing method call are

reflected in AMM via the MethodCallBinding class – a specialization of Binding (Figure 16). Since a

binding is to be established between a provided-required interface pair, there are two

specialized types of binding endpoints – ProvidedInterfaceEndpoint (Figure 16.a), and

RequiredInterfaceEndpoint (Figure 16.b); recall Section 3.4.

*

 providedInteraces

ProvidedInterface

EndpointHolder

<<abstract>>

+name: String

ComponentEndpoint

<<abstract>>*

endpoints

<<abstract>>

+name: String

ComponentEndpoint

<<abstract>>*

endpoints

<<abstract>>

*

 requiredInteraces

EndpointHolder

<<abstract>>

RequiredInterface

1

type InterfaceType

ProvidedInterface

RequiredInterface

1

 type

D3S Technical Report no. D3S-TR-2012-07

16

(a)

(b)

Figure 16 Definition of binding, provided (a), and required (b) binding endpoint, for *EFM*.

In the case of *EFM1 and *EFM2, since a binding endpoint also comprises an association to a

component instance to define the particular component endpoint (Section 3.4), AMM contains

also a specialization of the corresponding abstract composite relation for each of the specialized

binding endpoint classes (Figure 17); i.e., providingComponent for ProvidedInterfaceEndpoint and

requiringComponent for RequiredInterfaceEndpoint.

(a) (b)

Figure 17 Reference to a component instance in the method-call binding endpoints for *EFM1 and *EFM 2: the
provided interface endpoint (a) and the required interface endpoint (b).

Note that since there are always exactly two binding endpoints each featuring exactly one

component endpoint association and one component instance association, AMM can be

simplified by omitting the binding endpoint classes and by moving their associations to the

MethodCallBinding class itself (Figure 18).

Figure 18 Simplified variant of method call binding for *EFM1 and *EFM 2.

In the case of HEFM*, AMM further comprises the methodCallBindings composite association – a

specialization of the composite association aggregating the bindings among subcomponents of a

particular composite component (Section 3.3) – grouping the method-call-based bindings

(Figure 19).

Binding

<<abstract>>

MethodCallBinding

BindingEndpoint

<<abstract>>

*

bindingEndpoints

<<abstract>>

1

 providedEndpoint

ProvidedInterfaceEndpoint

+name: String

ComponentEndpoint

<<abstract>>

1

endpointInBinding

<<abstract>>

ProvidedInterface

1

 providedInterface

Binding

<<abstract>>

MethodCallBinding

BindingEndpoint

<<abstract>>

*

bindingEndpoints

<<abstract>>

1

 requiredEndpoint

RequiredInterfaceEndpoint

+name: String

ComponentEndpoint

<<abstract>>

1

endpointInBinding

<<abstract>>

RequiredInterface

1

 requiredInterface

BindingEndpoint

<<abstract>>

ProvidedInterfaceEndpoint

+name: String

ComponentInstance

1

providingComponent

1

endpointOwner

<<abstract>>
BindingEndpoint

<<abstract>>

RequiredInterfaceEndpoint

+name: String

ComponentInstance

1

requiringComponent

1

endpointOwner

<<abstract>>

MethodCallBinding

ProvidedInterface

1

providedInterface

RequiredInterface

1

requiredInterface

1

providingComponent

+name: String

ComponentInstance

1

requiringComponent

D3S Technical Report no. D3S-TR-2012-07

17

Figure 19 Definition of method call binding aggregation for HEFM
*.

Further, similar to specialization of concepts related to bindings, in the case of HEFM
* it is

necessary to specialize the abstract concepts related to endpoint delegation (Section 3.3). Again,

a specialization for each of the binding endpoint classes is introduced (Figure 20); i.e.,

ProvidedDelegatio, RequiredDelegation, and related associations.

(a)

(b)

Figure 20 Definition of provided (a) and required (b) interface delegation for HEFM
*.

As for *IFM*, a service-like approach is used for establishing the implicit bindings – each

provided interface is perceived as a service to be selected by required interfaces. This is

reflected in AMM by the specialization of the endpoint binding constraints (Section 3.4).

Specifically, in the cases of *IFM0 and *IFM1, for a provided interface these constraints take the

form of a collection of attributes, reflected in AMM by the InterfaceAttribute class associated to the

interface via the attributes composite association (Figure 21.a), while the constraints for

a required interface take the form of an attribute filter, reflected in AMM by the InterfaceFilter

class associated to the interface via the filter composite association (Figure 21.b). The rule for

establishing a binding requires that the filter of the required interface has to match

the particular attributes of the provided interface and its owner component instance. This thus

effectively enables selection of an appropriate service represented by a provided interface for a

Binding

<<abstract>>

*

bindings

<<abstract>>

SubcomponentHolder

<<abstract>>

MethodCallBinding

*

 methodCallBindings

SubcomponentHolder
<<abstract>>

1

parentEndpoint
<<abstract>>

*

delegations
<<abstract>>

1

subcomponentEndpoint

<<abstract>>

+name: String

ComponentEndpoint
<<abstract>>

Delegation
<<abstract>>

*

providedDelegations

ProvidedDelegation

ProvidedInterface

1

 subcomponentProvidedInterface

1

parentProvidedInterface

+name: String

ComponentInstance

1subcomponent

SubcomponentHolder
<<abstract>>

1

parentEndpoint
<<abstract>>

*

delegations
<<abstract>>

1

subcomponentEndpoint

<<abstract>>

+name: String

ComponentEndpoint
<<abstract>>

Delegation
<<abstract>>

*

requiredDelegations

RequiredDelegation

RequiredInterface

1

 subcomponentRequiredInterface

1

parentRequiredInterface

+name: String

ComponentInstance

1subcomponent

D3S Technical Report no. D3S-TR-2012-07

18

binding with a particular required interface. Since the form of required interface filters and

their association with attributes vary significantly for different CMMs, we do not further

elaborate on this in AMM.

(a) (b)

Figure 21 Endpoint binding constraints for *IFM0 and *IFM1: interface attribute (a) and filter (b).

In the case of *IFM2, since the component endpoint definitions introduced by a component type

are (potentially) shared among several component templates (Section 3.4), AMM also

introduces specializations of EndpointConfiguration for each of the types of endpoints –

ProvidedInterfaceConfiguration and RequiredInterfaceConfiguration, associated with component template

via providedInterfaceConfigurations and requiredInterfaceConfigurations (Figure 22).

(a)

(b)

Figure 22 Endpoint binding constraints for provided (a) and required (b)interfaces in *IFM2.

Furthermore, in the cases of *IFM1 and *IFM2, in order to allow for implicit bindings specific to

some component instances, the Attribute class, representing the specifics of a component

instance, is included in interface filters of required interfaces (similar to the association of

interface filters with attributes, also this relation is not explicitly captured by AMM).

The inference rules defining the part of AMM related to method-call is given in Figure 23.

+name: String

ComponentEndpoint

<<abstract>>

ProvidedInterface

EndpointBindingConstraint

<<abstract>>

*

bindingConstraints

<<abstract>>

InterfaceAttribute

*

attributes

+name: String

ComponentEndpoint

<<abstract>>

RequiredInterface

EndpointBindingConstraint

<<abstract>>

*

bindingConstraints

<<abstract>>

InterfaceFilter

1

 filter

EndpointBindingConstraint

<<abstract>>

+name: String

ComponentEndpoint

<<abstract>>

EndpointConfiguration

<<abstract>>

 *

endpointConfigurations

<<abstract>>

*

bindingConstraints

<<abstract>>

1

endpoint

<<abstract>>

+name: String

ComponentTemplate

InterfaceFilter

RequiredInterface

RequiredInterfaceConfiguration

1

filter

1

 interface

 *

requiredInterfaceConfigurations

EndpointBindingConstraint

<<abstract>>

+name: String

ComponentEndpoint

<<abstract>>

EndpointConfiguration

<<abstract>>

 *

endpointConfigurations

<<abstract>>

*

bindingConstraints

<<abstract>>

1

endpoint

<<abstract>>

+name: String

ComponentTemplate

InterfaceAttribute

ProvidedInterface

ProvidedInterfaceConfiguration

*

attributes

1

 interface

 *

providedInterfaceConfigurations

D3S Technical Report no. D3S-TR-2012-07

19

Figure 23 Rules for defining AMMs of CM-families with method-call

3.5.2 Asynchronous messaging

Asynchronous messaging is asynchronous message-bus-like communication among a number of

publishers and a number of subscribers. For brevity, since the asynchronous messaging

concepts are reflected in a similar manner as the method-call concepts, we present only a

tabular overview (Table 3 in Appendix A) together with a brief description of the differences

between method call and asynchronous messaging.

/* CM- f amilies with method - call */

(1) ** FM* :
+ class ProvidedInterface{name} refines ComponentEndpoint
+ class RequiredInterface{name} refines ComponentEndpoint
+ compo EndpointHolder.providedInterfaces: ProvidedInterface[*] refines EndpointHolder.endpoints
+ compo EndpointHolder.requiredInterfaces: RequiredInterface[*] refines EndpointHolder.endpoints
+ class InterfaceType{}
+ assoc RequiredInterface.type: InterfaceType[1]

+ assoc ProvidedInterface.type: InterfaceType[1]

/* method - call for explicit horizontal composition */

(2) * EFM* :
+ class MethodCallConnection{} refines Binding

+ class ProvidedInterfaceEndpoint{} refines BindingEndpoint

 + compo MethodCallConnection.providedEndpoint: ProvidedInterfaceEndpoint[1]
 refines Binding.bindingEndpoints

+ assoc ProvidedInterfaceEndpoint.providedInterface: ProvidedInterface[1]
 refines BindingEndpoint.endpointInBinding

+ class RequiredInterfaceEndpoint{} refines BindingEndpoint
 + compo MethodCallConnection.requiredEndpoint: RequiredInterfaceEndpoint[1]
 refines Binding.bindingEndpoints

+ assoc RequiredInterfaceEndpoint.requiredInterface: RequiredInterface [1]
 refines BindingEndpoint.endpointInBinding

+ ocl ProvidedRefinesRequired
 context MethodCallConnection inv :
 providedEndpoint. providedInterface . oclIsKindOf (

requiredEndpoint .requiredInterface. oclType ())

(3) *EFM1, *EFM2 :
+ assoc ProvidedInterfaceEndpoint .providingComponent: Component Instance [1]

refines BindingEndpoint.endpointOwner
+ assoc RequiredInterfaceEndpoint . requirin gComponent: ComponentInstance [1]

refines BindingEndpoint.endpointOwner

(4) HEFM* :
+ compo SubcomponentHolder .methodCallConnections: MethodCallConnection[*]

refines SubcomponentHolder.bindings

/* method - call for implicit horizontal composition */

(5) * I FM* :
+ class InterfaceAttribute{} refines EndpointBindingConstraint
+ class InterfaceFilter{} refines EndpointBindingConstraint

(6) * I FM0, * I FM1 :
+ compo ProvidedInterface . attributes: InterfaceAttribute[*]

refines ComponentEndpoint.bindingConstraints
+ compo RequiredInterface . filter: InterfaceFilter[1]

refines ComponentEndpoint.bindingConstraints

(7) * I FM2 :
+ class ProvidedInterfaceConf iguration {}
+ compo ProvidedInterfaceConf iguration . attributes: InterfaceAttribute[*]
 refines EndpointConfiguration.bindingConstraints
+ assoc ProvidedInterfaceConf iguration.interface: ProvidedInterface[1]

refines EndpointConfiguration.endpoint
+ compo ComponentTemplate . providedInterfaceConfigurations:

ProvidedInterfaceConf iguration[*]
 refines ComponentTemplate.endpointConfigurations
+ class RequiredInterfaceConf iguration {}
+ compo RequiredInterfaceConf iguration . filter: InterfaceFilter[1]

refines EndpointConfiguration.bindingConstraints
+ assoc RequiredInterfaceConf iguration.interface: Requiredinterface[1]

refines EndpointConfiguration.endpoint
+ compo ComponentTemplate . requiredInterfaceConfigurations:

RequiredInterfaceConf iguration[*]
 refines ComponentTemplate.endpointConfigurations

D3S Technical Report no. D3S-TR-2012-07

20

In general, messaging is an asynchronous transfer of data messages issued by a component’s

“source” endpoint (publisher) and accepted by another component’s “sink” endpoint

(subscriber), so that a number of publishers are allowed to send messages to a single subscriber

simultaneously, while a single publisher can simultaneously issue transfers to multiple

subscribers. Thus, an asynchronous-messaging binding is a form of directed m-to-n binding. In

this context, a “source” endpoint is similar to a required interface of method call, while a “sink”

endpoint is similar to a provided interface. Since the way of issuing and accepting messages is

specific to a particular message broker, AMM does not introduce any specific concept for

source/sink interface type. As a consequence, AMM implicitly covers both push and pull

messaging models.

In the case of *EFA*, the binding between publishers and subscribers is modeled by a message

bus, similar to a method-call binding. In the case of *IFA*, messages are routed according to

equality of topics.

3.5.3 Streaming

Streaming is a unidirectional dataflow between a number of sources and sinks of components.

Thus, a binding in this case has the character m-to-n. In this context, a “source” endpoint is

similar to a required interface of method call, while a “sink” endpoint is similar to a provided

interface. Since the way of issuing and accepting stream data is typically specific to a particular

streaming framework, AMM does not introduce any specific concept for source/sink interface

type.

Although different in semantics, at the AMM level streaming is very similar to asynchronous

messaging. In fact, there are only differences in naming, i.e., while messaging employs message

sources, sinks, message buses, and topics, streaming employs streaming sources, sinks,

streaming bindings, and pipes. Since the table of differences between streaming and method call

would be very similar to the Table 3 in Appendix A, it is omitted for brevity.

3.5.4 Blackboard

Blackboard communication style is a bidirectional interaction via a shared tuple-space-based

storage (e.g., Linda-based storage [25]). Here, components feature endpoints that serve as

attachment points to the tuple space.

The major difference to the method-call, messaging, and streaming communication styles is that

blackboard endpoints are bidirectional, while the others are unidirectional (e.g.,

provided/required interfaces).

Again, for brevity, only a tabular overview (

Table 4 in Appendix A) and a brief description of the differences between method call and

blackboard are presented.

3.5.5 Connectors

In its basic form [23], a connector encapsulates the communication semantics of a binding by

means of its communication form. It thus captures interaction in a very general way. In

particular, component endpoints, here (connector) interfaces, are not differentiated on the

conceptual level (contrary to provided/required interfaces in method call). The responsibility of

D3S Technical Report no. D3S-TR-2012-07

21

each interface participating in the connector is then expressed by the role attribute of the

associated connector endpoint (the possible values of role are determined by the value of

communication form). For example, when considering synchronous procedure call as the

communication form of the connector, the interfaces can take the role of either caller or callee.

Further details on connector definition and synthesis are presented in [23] (where

communication form is referred to as communication style).

In this paper, we assume a generalized form of connectors, where a connector may represent an

adaptor among multiple communication forms. For this reason, the communication form is in

AMM associated directly with a component interface (along with the role of the interface in the

communication form), rather than with the connector (and connector endpoint, respectively).

Again, for brevity, only a tabular overview (Table 5 in Appendix A) and a brief description of the

differences between method call and connectors are presented.

3.6 AMM: Eliminating Abstract Concepts
AMM of a particular CM-family as defined by the production rules described in the previous

sections contains several abstract concepts (i.e., abstract classes and associations). However,

these abstract concepts, although capturing the properties shared among different component

model families, do not have their counterpart in concrete meta-models. Thus, AMM is simplified

by eliminating the abstract concepts. Figure 25 shows an AMM example of the HEFM2 CM-family.

The elimination comprises two steps – removal of the abstract classes and associations and

modification of some of the OCL constraints, the constraints featuring the abstract concepts in

particular. While the former step is straightforward, the latter requires each of the OCL

constraints to be “specialized” for each of the specializations of the featured abstract concepts.

In principle, an OCL constraint featuring an abstract concept A will be replaced by several new

constraints, one for each of the specializations – B – of A, having all the occurrences of A replaced

by B. For example, the generic BindingsAmongSubcomponentsOnly (Figure 13) will be in case of the

HEFM2 AMM (Figure 25) replaced by the two OCL constraints in Figure 24 (one for each

specialization of BindingEndpoint: ProvidedInterfaceEndpoint and RequiredInterfaceEndpoint).

Figure 24 Specialization of the BindingsAmongSubcomponentsOnly OCL constraint for HEFM2.

ocl BindingsAmongSubcomponentsOnly _ProvidedInterfaceEndpoint
context SubcomponentHolder inv :

subcomponents- >include s(methodCallBindings.providedEndpoint.providingComponent)
ocl BindingsAmongSubcomponentsOnly _RequiredInterfaceEndpoint
context SubcomponentHolder inv :

subcomponents- >include s(methodCallBindings.requiredEndpoint.requiringComponent)

D3S Technical Report no. D3S-TR-2012-07

22

Figure 25 AMM of the HEFM2 CM-family.

In this context, Table 2 shows the rules which were applied during the construction of the AMM.

Table 2 Production rules relevant for the HEFM2 family.

Dimension (Section) Applied Rules

Common Concepts (3.1) 1
Component Abstraction Level (3.2) 2, 3
Vertical Composition (3.3) 1, 2, 7, 8
Horizontal Composition (3.4) 1, 2, 4, 5
Method-call Communication Style (3.5.1) 1, 2, 3, 4

4 Discussion

4.1 Choice of dimensions
The key idea of CM- families is based on introducing four orthogonal dimensions that

characterize compositional rules. The orthogonality of the dimensions is proved by the fact that

each combination of valuations in the dimensions yields a unique and sound AMM.

Nevertheless, to apply CM-families to features other than composition, it is necessary to

introduce additional orthogonal dimensions. Although possible, this is beyond the scope of this

article. Good candidates are, e.g., security, distribution, persistence, real-time properties, and

performance (for illustration, how this can be done for performance is briefly discussed below).

+name: String

ComponentTemplate

 *

requiredDelegations

+name: String

ComponentType

0..1
type

*

subcomponents+name: String

ComponentInstance

0..1

template

 1..*

refinedType

RequiredDelegation
1

parentRequiredInterface

 1

subcomponentRequiredInterface

+key: String

+value: String

Attribute
*

attributes

XOR

 1

subcomponent

MethodCallBinding

1
providedEndpoint

ProvidedInterfaceEndpoint

ProvidedInterface

 1
providedInterface

1
requiredEndpoint

RequiredInterfaceEndpoint

RequiredInterface

1

requiredInterface

1

providingComponent

1

requiringComponent

*

methodCallBindings

*

providedInteraces

*

requiredInteraces

 1

type

InterfaceType

1

type

 *

providedDelegations

ProvidedDelegation

 1
parentProvidedInterface

1

subcomponentProvidedInterface

 1

subcomponent

BindingsAmongSubcomponentsOnly_RequiredInterfaceEndpoint

BindingsAmongSubcomponentsOnly_ProvidedInterfaceEndpoint

D3S Technical Report no. D3S-TR-2012-07

23

The four dimensions have been formed based on our experience with and analysis of the

existing component models1. However, the provision of the benefits discussed below

(Section 4.2) is bound to the assumption is that there exists a homomorphism between the AMM

of the CM-family and the composition-oriented part of CMM of a real-life component model.

Obviously this cannot be formally proved – it can be shown only empirically.

For an illustration of such a homomorphism, we provide in Table 6 in Appendix B an informal

overview of the correspondence between abstractions of the HIC2 AMM (Figure 28 in Appendix

B) and the SOFA 2 CMM2 (relevant part is shown in Figure 29 in Appendix B).

4.2 Benefits of PTOCM
Providing a meta-model skeleton when no meta-model exists. An essential characteristic of

PTOCM is that for each CM-family it provides a meta-model skeleton that fully captures

compositional options. Since composition is inherent to every component model, this skeleton

forms a non-trivial core of the desired meta-model. In other words, if a meta-model MM is to be

created for a component model C, the abstract meta-model of the corresponding CM-family can

be always advantageously used as the core of MM; to reflect specifics of C (other features than

composition in particular) its fully-fledged form is supplemented by additional classes,

attributes and relations.

An example of this application of PTOCM is the creation of a meta-model for OSGi components.

OSGi features implicit method-call based bindings at one level of nesting without explicit

component-instance distinction, which corresponds to NIFM0 family. Thus the abstract meta-

model of the NIFM0 family can be used as the core of the OSGi meta-model. Since OSGi features

package dependencies and exports not covered by the NIFM0 meta-model, to create a fully-

fledged meta-model, the NIFM0 core has to be enhanced by classes and relations that cover these

OSGi-specific features.

Avoiding pitfalls when designing a component model. It is important to note that PTOCM

directs the process of specifying compositional properties in CMM of a component model in the

“right direction” helping avoid unforeseen pitfalls. This can be exemplified in the design of the

DEECo component model [8]. DEECo aims at development of highly distributed systems of

autonomous components. DEECo is a flat component model with components acting as

singletons. The key compositional feature is the implicit knowledge exchange within

“ensembles”, each of which is a dynamic group of components inferred from the validity of a

membership predicate. As to connectivity, DEECo belongs to the CM-family NIFB0.

A problem arises with introducing the possibility of hierarchical DEECo components to reflect

the “consists-of” relationship in the real-world. In particular, an issue is what should be an

appropriate semantics of such an enhanced component model. PTOCM helps in resolving this

issue: Realizing that DEECo belongs to NIFB0 family, a variant allowing for hierarchical nesting

would be HIFB0 with clearly stated semantics. (For instance, this helped us reject our first naïve

idea of introducing nested ensembles).

1 Fractal, SOFA 2, OSGi, iPOJO, CCM, AUTOSAR, DEECo, ProCom
2 Available at svn://svn.forge.object web.org/svnroot/sofa/trunk/sofa/trunk/sofa - repository/model .

D3S Technical Report no. D3S-TR-2012-07

24

Likewise, SAM [20] was originally designed as an approximation of all involved component

models. It required a lot of iterations and compromises, when negotiating with the partners. At

the end, it appeared that in fact all the involved models belong to the HEFMA1 CM-family. If we

knew it in the beginning, we could have saved a lot of effort and avoided a number of mistakes

and corrections on the fly. In particular, we could have created the associated AMM as a basis

for SAM.

Generic transformations of component architectures. By providing a well-defined

standardized AMM for each CM-family, PTOCM establishes a foundation for forming

transformations of component architectures at the level of AMMs. This allows description of

a whole range of CMMKi COMMLj transformations using only one generic AMMK AOMML

transformation for the families K and L. This is due to the fact that, even though we have not

mentioned it, a mapping CMMKi AOMMK can be defined and since there exists a homomorphism

AMML COMMLj, the transformation AMMK AOMML acts as a transformation between the

composition-oriented cores of CMMK* COMML* (where CMMX* stands for all CMMs in the family

X), as illustrated in Figure 26.

Figure 26 Scheme of a generic transformation between two CMMs from different CM-families.

If two families L, M have the same valuation of a dimension ὴ, the transformations

AMMK AOMML, AMMK AOMMM can take advantage of sharing the functionality related to ὴ and

be created as a composition of the following simpler transformations: (i) AMM ᴼAMM ȟ , (ii)

AMM ᴼAMM , (iii) AMM ᴼAMM , where ὴ denotes the complement of ὴ. This is illustrated

in Figure 27.

D3S Technical Report no. D3S-TR-2012-07

25

Figure 27 Scheme of a generic transformation of a CMM into two CMMs from different CM-families with a
common dimension valuation.

For instance, we have employed similar transformations in our previous work [26] for

introducing a transformation from a dedicated UML component model to several CMMs, where

each of them belonged to a different CM-family (NIFM0, HIFM1, HEFM1, and HEFM2).

Automated provision of AMM representation. Technically, by employing the compositional

definition of AMMs via production rules, it is straightforward to design a tool for automated

creation of an AMM representation, such as a UML diagram [27], EMF meta-model [28], etc.

4.3 Prospective research directions
Discovering and exploring not-yet-existing component models. Given the cardinality of its

dimensions’ domains, PTOCM describes compositional characteristics of of CM families.

However, a number of them do not have a real instance an already existing, concrete

component model. This may be due to limited practical application; for instance, NEC2 would

contain component models featuring support for product-lines and multiple communication

styles, nevertheless without the possibility of a hierarchical component composition, an

important prerequisite for building product-lines. On the other hand, there are CM-families

worth investigating, such as NEFM0, which contains component models useful as intermediary

models when a hierarchical component application is flattened, broken to executable units to be

deployed (as, e.g., in SOFA-HI [29]); another promising CM-family is HIC2, whose representative

member would be an iPOJO-like framework featuring design connectors and explicit description

of product-lines.

D3S Technical Report no. D3S-TR-2012-07

26

Establishing the distance between CM-families. Important feature of PTOCM is that it

describes the abstract meta-models and their semantics in a compositional manner along the

four dimensions. This makes it possible to define a metric Ὠὢȟὣ ᶰὈ expressing “how distant”

two CM-families (ὢ,ὣ) are, this can help to assess similarity of component models. Such a metric

would allow us quantitatively answer questions of similarity of component models raised in

Section 1.

Such a metric may take different shapes – from a relatively crude one to a very elaborate one

based on empirical data collected from real-life projects. Defining a metric based on empirical

data is out of the scope of this paper. However, our initial experiments show that even a

relatively crude metric, which relies on the assumption that partial order upon Ὀ is derived

from the partial orders upon distances of valuations in individual dimensions, can already give a

relatively good approximation of similarity of CM-families X and Y.

The partial order upon D nicely reflects the fact that some distances (Ὠὢȟὣ and Ὠὢȟὤ) are to

be treated as essentially incomparable – for instance Ὠ(NIFM0, NEFM0) is incomparable to

Ὠ(NIFM0, HIFM0) since we cannot credibly quantify whether the distance in vertical composition

is more than distance in horizontal composition. Moreover, the partially ordered set Ὀȟ can

be constructed in such a way that it forms a non-trivial lattice (i.e. any two distances have a

supremum and infimum), which means that even if two distances cannot be compared, it is

possible to judge how different they are by considering “how far” their infimum and supremum

are from each other.

Extending the number of dimensions. Even though considering additional specific

dimensions is beyond the scope of this article, this section briefly illustrates such extension

possibilities on the example of the performance specification dimension. This dimension

describes how the component model captures performance-relevant properties of the

component system. The three valuations of the dimensions are None, Interface and Behavior,

referring to models that either provide no performance specification, or provide performance

specification at the level of component interfaces, or component behavior, respectively.

Models that provide performance specification at the interface level make it possible to capture

requirements or guarantees observable at component boundaries. Such specification is useful

for example in checking compositional correctness or observing runtime compliance with

contractual obligations in service-level agreements (e.g. WSLA [30]).

Performance specification at the behavior level assumes the existence of a behavior

specification (another model dimension) that associates specific activities with features

accessible through particular endpoints. Capturing performance-relevant attributes of such

activities makes it possible to, e.g., construct predictive performance models of the entire

component system (PCM [31]).

The performance specification dimension uses an abstract notion of a performance-relevant

attribute. Depending on the context, this may express for instance performance requirements as

in SPL [32] and actual measurements of observed performance as in RPG [33].

D3S Technical Report no. D3S-TR-2012-07

27

5 Related work
The idea of component families has been partly applied in our previous work [26] (called CoDIT

– Component Design–Implementation Transformation) on connecting system-level and

component-level development processes [2]. However, CoDIT defined only four families of

component models (NIFM0, HIFM1, HEFM1 and HEFM2), which it subsequently employed in

defining a particular generic transformation (thus evaluating the process described in Section

4.5).

To our knowledge, there is no other work resembling CM-families or providing benefits

mentioned in Section 4.

On the other hand, our PTOCM method defines in fact a classification of component models and

therefore any work defining a classification of component models is related. For example, there

are papers like [34–36], but the classifications in them are more or less intended for selecting a

“universally best'” component model.

In [34] the authors analyze component models of 13 component frameworks from three points

of view: (a) component syntax, (b) component semantics, and (c) component composition. The

analyzed component frameworks are from a wide range of domains – from enterprise ones (e.g.,

EJB [37]) till embedded ones (e.g., PECOS [38]). The main result of the paper is a taxonomy of

the component models based on these three points of view mentioned above.

In [35] the authors analyze 24 component frameworks from multiple points of view, from

component model to deployment, intended purpose, etc. The analyzed component frameworks

span across a wide range of domains. The output of the paper is a framework for classification

and comparison of component models, which aids understanding of the main concepts of

different component-based approaches.

In [36] a comparison and evaluation of six component frameworks is presented. The main

aspect (and in fact the only one) of the evaluation is how well they are accepted by the industry.

As a target domain, vehicular embedded systems are considered.

The above mentioned papers are of course not the only ones. Within the past 15 years there has

been published a large number of classifications/comparisons/evaluations of component

frameworks and their models; each of them providing a different point of view on these

frameworks/models.

For example the paper [39] defines a classification of component models and by employing it,

the paper evaluates 10 concrete models. The classification is based on four main categories

(which are in a sense close to our dimensions): (1) support for modeling components, (2)

connectors, (3) composition, and (4) tool support. The main goal of the paper is to compare the

component models, show their shortcomings, and thus show future research directions.

The paper [40] provides also a classification of component models but it focuses on an

enterprise systems domain. The paper [41] defines a classification covering not only component

models but also development process, application domains, roles, etc.

D3S Technical Report no. D3S-TR-2012-07

28

6 Conclusion
The paper presents PTOCM, a novel method for defining (abstract) component meta-models.

The key idea is to introduce orthogonal dimensions of variability among the component models

with respect to composition, grouping models into component model families. Each family is

associated with a rigorously-defined abstract meta-model (AMM).

Since AMMs are standardized with respect to the component model families, PTOCM allows for

providing a meta-model skeleton when no meta-model exists, avoiding pitfalls when designing a

component model, defining generic transformations of component architectures. From the

application perspective, a major benefit is that the provision of AMMs can be easily automated

by employing the production rules.

Furthermore, PTOCM provides a foundation for discovering and exploring not-yet-existing

component models and a basis for establishing the concept of CM-families’ distance to assess

similarity of component models.

Bibliography
[1] C. Szyperski, Component Software: Beyond Object-Oriented Programming, 2n edition. Addison-Wesley

Professional, 2011, p. 624.

[2] I. Crnkovic, S. Larsson, and M. Chaudron, “Component-Based Development Process and Component
Lifecycle,” Journal of Computing and Information Technology, vol. 13, no. 4, pp. 321–327, Oct. 2005.

[3] A. L. C. Tavares and M. T. Valente, “A gentle introduction to OSGi,” ACM SIGSOFT Software Engineering Notes,
vol. 33, no. 5, p. 1, Aug. 2008.

[4] C. Escoffier, R. S. Hall, and P. Lalanda, “iPOJO: an Extensible Service-Oriented Component Framework,” in
IEEE International Conference on Services Computing (SCC 2007), 2007, pp. 474–481.

[5] N. Wang, D. C. Schmidt, and C. O’Ryan, “Overview of the CORBA component model,” pp. 557–571, Jun. 2001.

[6] E. Bruneton, T. Coupaye, M. Leclercq, V. Quéma, and J.-B. Stefani, “The FRACTAL component model and its
support in Java,” Software: Practice and Experience, vol. 36, no. 11–12, pp. 1257–1284, Sep. 2006.

[7] T. Bures, P. Hnetynka, and F. Plasil, “Sofa 2.0: Balancing advanced features in a hierarchical component
model,” Fourth International Conference on Software, 2006.

[8] J. Keznikl, T. Bures, F. Plasil, and M. Kit, “Towards Dependable Emergent Ensembles of Components: The
DEECo Component Model,” in 2012 Joint Working IEEE/IFIP Conference on Software Architecture and
European Conference on Software Architecture, 2012, pp. 249–252.

[9] D. Schreiner and K. M. Goschka, “A Component Model for the AUTOSAR Virtual Function Bus,” in 31st Annual
International Computer Software and Applications Conference (COMPSAC 2007), 2007, pp. 635–641.

[10] T. Bures, J. Carlson, S. Sentilles, and A, “A component model family for vehicular embedded systems,”
Advances, 2008. ICSEA, pp. 437–444, Oct. 2008.

[11] A. Kleppe, J. Warmer, and W. Bast, MDA Explained: The Model Driven Architecture: Practice and Promise
(Addison-Wesley Object Technology). Addison Wesley, 2003, p. 192.

[12] M. Kempa, “Model Driven Architecture,” Informatik-Spektrum, vol. 28, no. 4, pp. 298–302, Aug. 2005.

[13] C. Atkinson and T. Kuhne, “Model-driven development: a metamodeling foundation,” IEEE Software, vol. 20,
no. 5, pp. 36–41, Sep. 2003.

[14] Object Management Group, “Deployment and Configuration of Component-based Distributed Applications
Specification,” 006.

[15] L. Seinturier, P. Merle, R. Rouvoy, D. Romero, V. Schiavoni, and J.-B. Stefani, “A component-based middleware
platform for reconfigurable service-oriented architectures,” Software: Practice and Experience, vol. 42, no. 5,
pp. 559–583, May 2012.

D3S Technical Report no. D3S-TR-2012-07

29

[16] J. Marino and M. Rowley, Understanding SCA (Service Component Architecture). Addison-Wesley Professional,
2009, p. 360.

[17] J.-P. Fassino, J.-B. Stefani, J. L. Lawall, and G. Muller, “Think: A Software Framework for Component-based
Operating System Kernels,” in Proceedings of the General Track of the annual conference on USENIX Annual
Technical Conference (ATEC ’02), 2002, pp. 73–86.

[18] A. Plsek, F. Loiret, P. Merle, and L. Seinturier, “A component framework for java-based real-time embedded
systems,” in Proceedings of the 9th ACM/IFIP/USENIX International Conference on Middleware, 2008, pp. 124–
143.

[19] L. Bulej, T. Bures, T. Coupaye, M. Decky, P. Jezek, P. Parizek, F. Plasil, T. Poch, N. Rivierre, O. Sery, and P. Tuma,
“CoCoME in Fractal,” in Common Component Modeling Example, LNCS 5153, Springer Berlin / Heidelberg,
2008, pp. 357–387.

[20] S. Becker, M. Hauck, M. Trifu, K. Krogmann, and J. Kofron, “Reverse Engineering Component Models for
Quality Predictions,” in 14th European Conference on Software Maintenance and Reengineering (CSMR ’10),
2010, pp. 194–197.

[21] T. Bures and F. Plasil, “Communication Style Driven Connector Configurations,” in Software Engineering
Research and Applications, LNCS 3026, vol. 3026, C. V. Ramamoorthy, R. Lee, and K. W. Lee, Eds. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2004, pp. 102–116.

[22] Object Management Group, “Meta Object Facility (MOF) Specification.” 7.

[23] J. Keznikl, T. Bureš, F. Plášil, and P. Hnětynka, “Automated resolution of connector architectures using
constraint solving (ARCAS method),” Software & Systems Modeling, pp. 1–30, Sep. 2012.

[24] M. Malohlava, F. Plasil, T. Bures, and P. Hnetynka, “Interoperable DSL Families for Code Generation,” Sciences-
New York, pp. 1–14.

[25] G. Pietro Picco, A. L. Murphy, and G.-C. Roman, “LIME: Linda meets mobility,” in Proceedings of the 21st
international conference on Software engineering - ICSE ’99, 1999, pp. 368–377.

[26] L. Hermann, T. Bures, P. Hnetynka, and M. Malohlava, “CoDIT: Bridging the Gap between System-Level and
Component-Level Development,” in Software Engineering Research, Management and Applications (SERA
2012), 2012, vol. 430, pp. 159–175.

[27] R. B. France, S. Ghosh, T. Dinh-Trong, and A. Solberg, “Model-Driven Development Using UML 2.0: Promises
and Pitfalls,” Computer, vol. 39, no. 2, pp. 59–66, Feb. 2006.

[28] F. Budinsky, D. Steinberg, E. Merks, R. Ellersick, and T. J. Grose, Eclipse Modeling Framework. Addison Wesley,
2003, p. 720.

[29] P. Hnetynka, T. Bures, M. Prochazka, R. Ward, and Z. Hanzalek, “SOFA High Integrity: Our Approach to
SAVOIR,” ESA Special Publication, vol. 669, p. 17, May 2009.

[30] A. Keller and H. Ludwig, “The WSLA Framework: Specifying and Monitoring Service Level Agreements for
Web Services,” Journal of Network and Systems Management, vol. 11, no. 1, pp. 57–81.

[31] S. Becker, H. Koziolek, and R. Reussner, “The Palladio component model for model-driven performance
prediction,” Journal of Systems and Software, vol. 82, no. 1, pp. 3–22, Jan. 2009.

[32] L. Bulej, T. Bures, J. Keznikl, A. Koubkova, A. Podzimek, and P. Tuma, “Capturing performance assumptions
using stochastic performance logic,” in Proceedings of the third joint WOSP/SIPEW international conference on
Performance Engineering - ICPE ’12, 2012, p. 311.

[33] V. Babka, P. Tuma, and L. Bulej, “Validating Model-Driven Performance Predictions on Random Software
Systems,” in Research into Practice – Reality and Gaps, Lecture Notes in Computer Science, vol. 6093, G. T.
Heineman, J. Kofron, and F. Plasil, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010, pp. 3–19.

[34] K.-K. Lau and Z. Wang, “Software Component Models,” IEEE Transactions on Software Engineering, vol. 33, no.
10, pp. 709–724, Oct. 2007.

[35] I. Crnkovic, S. Sentilles, A. Vulgarakis, and M. R. V. Chaudron, “A Classification Framework for Software
Component Models,” IEEE Transactions on Software Engineering, vol. 37, no. 5, pp. 593–615, Sep. 2011.

[36] A. Moller, M. Akerholm, J. Fredriksson, and M. Nolin, “Evaluation of component technologies with respect to
industrial requirements,” in Proceedings of EUROMICRO’04, 2004, pp. 56–63.

[37] Sun Microsystems Inc, “JSR 0: Enterprise JavaBeansTM,Version 3.0 EJB Core Contracts and Requirements
Version 3.0, Final Release.” 006.

D3S Technical Report no. D3S-TR-2012-07

30

[38] T. Genssler, C. Stich, A. Christoph, M. Winter, O. Nierstrasz, S. Ducasse, R. Wuyts, G. Arévalo, B. Schönhage, and
P. Müller, “Components for embedded software: the PECOS approach,” in Proceedings of the international
conference on Compilers, architecture, and synthesis for embedded systems - CASES ’02, 2002, pp. 19–26.

[39] N. Medvidovic and R. N. Taylor, “A classification and comparison framework for software architecture
description languages,” IEEE Transactions on Software Engineering, vol. 26, no. 1, pp. 70–93, 2000.

[40] K. J. Fellner and K. Turowski, “Classification framework for business components,” in Proceedings of the 33rd
Annual Hawaii International Conference on System Sciences, 2000, vol. vol.1, p. 10.

[41] I. S. Gerald Kotonya, “Towards a classification model for component-based software engineering research,” in
Proceedings of EUROMICRO’03, 2003, pp. 43–52.

Appendix A
This appendix shows the differences of method call to the other communication styles.

Table 3 Differences of asynchronous messaging to the method call communication style

Method call concept Corresponding asynchronous messaging concept

General concepts:
ProvidedInterface MessageSink
RequiredInterface MessageSource
EndpointHolder.providedInterfaces[*] EndpointHolder.messageSinks[*]
EndpointHolder.requiredInterfaces[*] EndpointHolder.messageSources[*]
InterfaceType no corresponding concept
ProvidedInterface.type[1] and RequiredInterface.type[1] no corresponding concept

Concepts related to explicit horizontal composition (*EFA*):
MethodCallBinding MessageBus
ProvidedInterfaceEndpoint MessageSinkEndpoint
RequiredInterfaceEndpoint MessageSourceEndpoint
MethodCallBinding.providedEndpoint[1] MessageBus.sinks[*]
MethodCallBinding.requiredEndpoint[1] MessageBus.sources[*]
ProvidedInterfaceEndpoint.providedInterface[1] MessageSinkEndpoint.sink[1]
RequiredInterfaceEndpoint.requiredInterface[1] MessageSourceEndpoint.source[1]

Concepts related to explicit horizontal composition and component abstraction levels 1 and 2 (*EFA1/2):
ProvidedInterfaceEndpoint.providingComponent[1] MessageSinkEndpoint.component[1]
RequiredInterfaceEndpoint.requiringComponent[1] MessageSourceEndpoint.component[1]

Concepts related to explicit horizontal composition and hierarchical vertical composition (HEFA*):
SubcomponentHolder.methodCallConnections[*] SubcomponentHolder.MessageBuses[*]
ProvidedDelegation SinkDelegation
RequiredDelegation SourceDelegation
SubcomponentHolder.providedDelegations[*]
SubcomponentHolder.requiredDelegations[*]

SubcomponentHolder.sinkDelegations[*]
SubcomponentHolder.sourceDelegations[*]

ProvidedDelegation.parentProvidedInterface[1] SinkDelegation.parentSink[1]
ProvidedDelegation.subcomponentProvidedInterface[1] SinkDelegation.subcomponentSink[1]
RequiredDelegation.parentRequiredInterface[1] SourceDelegation.parentSource[1]
RequiredDelegation.subcomponentRequiredInterface[1] SourceDelegation.subcomponentSource[1]

Concepts related to implicit horizontal composition and component abstraction levels 0 and 1 (*IFA0/1):
InterfaceAttribute MessageSink.topics attribute
InterfaceFilter MessageSource.topics attribute
ProvidedInterface.attributes[*] and RequiredInterface.filter[1] no corresponding concept

Concepts related to implicit horizontal composition and component abstraction level 2 (*IFA2):
ProvidedInterfaceConfiguration SinkConfiguration
RequiredInterfaceConfiguration SourceConfiguration
ComponentTemplate.providedInterfaceConfigurations[*] ComponentTemplate.sinkConfigurations[*]
ComponentTemplate.requiredInterfaceConfigurations[*] ComponentTemplate.sourceConfigurations[*]
InterfaceAttribute SinkConfiguration.topics attribute
InterfaceFilter SourceConfiguration.topics attribute
ProvidedInterfaceConfiguration.attributes[*] no corresponding concept
RequiredInterfaceConfiguration.filter[1] no corresponding concept

D3S Technical Report no. D3S-TR-2012-07

31

Table 4 Differences of blackboard to the method call communication style

Method call concept Corresponding blackboard concept

General concepts:
ProvidedInterface BlackboardPort
RequiredInterface "
EndpointHolder.providedInterfaces[*] EndpointHolder.blackboardPorts[*]
EndpointHolder.requiredInterfaces[*] "
InterfaceType no corresponding concept
ProvidedInterface.type[1] & RequiredInterface.type[1] no corresponding concept

Concepts related to explicit horizontal composition (*EFB*):
MethodCallBinding Blackboard
ProvidedInterfaceEndpoint & RequiredInterfaceEndpoint BlackboardEndpoint
MethodCallBinding.providedEndpoint[1] Blackboard.endpoints[*]
MethodCallBinding.requiredEndpoint[1] "
ProvidedInterfaceEndpoint.providedInterface[1] BlackboardEndpoint.port[1]
RequiredInterfaceEndpoint.requiredInterface[1] "

Concepts related to explicit horizontal composition and component abstraction levels 1 and 2 (*EFB1/2):
ProvidedInterfaceEndpoint.providingComponent[1] BlackboardEndpoint.component[1]
RequiredInterfaceEndpoint.requiringComponent[1] "

Concepts related to explicit horizontal composition and hierarchical vertical composition (HEFB*):
SubcomponentHolder.methodCallConnections[*] SubcomponentHolder.blackboards[*]
ProvidedDelegation BlackboardDelegation
RequiredDelegation "
SubcomponentHolder.providedDelegations[*] SubcomponentHolder.blackboardDelegations[*]
SubcomponentHolder.requiredDelegations[*] "
ProvidedDelegation.parentProvidedInterface[1]
RequiredDelegation.parentRequiredInterface[1]

BlackboardDelegation.parentPort[1]
 "

ProvidedDelegation.subcomponentProvidedInterface[1] Delegation.subcomponentPort[1]
RequiredDelegation.subcomponentRequiredInterface[1] "

Concepts related to implicit horizontal composition and component abstraction levels 0 and 1 (*IFB0/1):
InterfaceAttribute BlackboardPort.blackboardName attribute
InterfaceFilter "
ProvidedInterface.attributes[*] & RequiredInterface.filter[1] no corresponding concept

Concepts related to implicit horizontal composition and component abstraction level 2 (*IFB2):
ProvidedInterfaceConfiguration BlackboardConfiguration
RequiredInterfaceConfiguration "
ComponentTemplate.providedInterfaceConfigurations[*] ComponentTemplate.blackboardConfigurations[*]
ComponentTemplate.requiredInterfaceConfigurations[*] "
InterfaceAttribute BlackboardConfiguration.blackboardName attribute
InterfaceFilter "
ProvidedInterfaceConfiguration.attributes[*] &
RequiredInterfaceConfiguration.filter[1]

no corresponding concept

Table 5 Differences of connectors to the method call communication style

Method call concept Corresponding connector concept

General concepts:
ProvidedInterface Interface
RequiredInterface "
EndpointHolder.providedInterfaces[*] EndpointHolder.interfaces[*]
EndpointHolder.requiredInterfaces[*] "
InterfaceType InterfaceType
ProvidedInterface.type[1] & RequiredInterface.type[1] Interface.type[1]
no corresponding concept Interface.communicationForm attribute
no corresponding concept Interface.role attribute

Concepts related to explicit horizontal composition (*EC*):
MethodCallBinding Connector
ProvidedInterfaceEndpoint & RequiredInterfaceEndpoint ConnectorEndpoint
MethodCallBinding.providedEndpoint[1] Connector.endpoints[*]
MethodCallBinding.requiredEndpoint[1] "
ProvidedInterfaceEndpoint.providedInterface[1] ConnectorEndpoint.interface[1]
RequiredInterfaceEndpoint.requiredInterface[1] "

Concepts related to explicit horizontal composition and component abstraction levels 1 and 2 (*EC1/2):

D3S Technical Report no. D3S-TR-2012-07

32

ProvidedInterfaceEndpoint.providingComponent[1] ConnectorEndpoint.component[1]
RequiredInterfaceEndpoint.requiringComponent[1] "

Concepts related to explicit horizontal composition and hierarchical vertical composition (HEFA*):
SubcomponentHolder.methodCallConnections[*] SubcomponentHolder.connectors[*]
ProvidedDelegation Delegation
RequiredDelegation "
SubcomponentHolder.providedDelegations[*] SubcomponentHolder.delegations[*]
SubcomponentHolder.requiredDelegations[*] "
ProvidedDelegation.parentProvidedInterface[1]
RequiredDelegation.parentRequiredInterface[1]

Delegation.parentInterface[1]
 "

ProvidedDelegation.subcomponentProvidedInterface[1] Delegation.subcomponentInterface[1]
RequiredDelegation.subcomponentRequiredInterface[1] "

Concepts related to implicit horizontal composition and component abstraction levels 0 and 1 (*IC0/1):
InterfaceAttribute InterfaceAttribute
InterfaceFilter InterfaceFilter
ProvidedInterface.attributes[*] Interface.attributes[*]
RequiredInterface.filter[1] Interface.filter[0..1]

Concepts related to implicit horizontal composition and component abstraction level 2 (*IC2):
ProvidedInterfaceConfiguration InterfaceConfiguration
RequiredInterfaceConfiguration "
ComponentTemplate.providedInterfaceConfigurations[*] ComponentTemplate.interfaceConfigurations[*]
ComponentTemplate.requiredInterfaceConfigurations[*] "
InterfaceAttribute InterfaceAttribute
InterfaceFilter InterfaceFilter
ProvidedInterfaceConfiguration.attributes[*] InterfaceConfiguration.attributes[*]
RequiredInterfaceConfiguration.filter[1] InterfaceConfiguration.filter[0..1]

D3S Technical Report no. D3S-TR-2012-07

33

Appendix B
This appendix shows a homomorphism from the AMM of the HIC2 CM-family to the CMM of the
SOFA2 component model.

Figure 28 AMM of the HEC2 CM-family.

+name: String

ComponentTemplate

+name: String

ComponentType

0..1

type

*

subcomponents

+name: String

ComponentInstance

0..1

template

1..*

refinedType

+key: String
+value: String

Attribute

 *

attributes

XOR

Connector
*

endpoints

InterfaceEndpoint

+name: String
+communicationStyle: String
+role: String

Interface

1

interface

 1

component

 *

connectors

*

interfaces

1
type

InterfaceType

 *

delegations

Delegation

1

parentInterface

1

subcomponentInterface

 1

subcomponent

D3S Technical Report no. D3S-TR-2012-07

34

Figure 29 Relevant part of the SOFA2 CMM.

Architecture

Frame

0..1

instantiatesFrame

0..*

subcomponent
SubcomponentInstance

0..1

instantiatesArchitecture

0..*

implements

+type: EString

Property

 0..*

property

Connection

0..*
endpoint

+interfaceName: EString

ComponentInterfaceEndpoint

+communicationStyle: String

Interface

0..*
connection

0..*

providedInterface

0..1

interfaceType

InterfaceType

 0..1

subcomponent

+name: EString

NamedEntity

+subcomponentPropertyName: EString

MappedProperty

+interfaceName: EString

SubcomponentInterfaceEndpoint

ConnectionEndpoint

0..*

requiredInterface

0..1

mappedProperty

VersionedEntity

0..1

instance

+name: EString

SubcomponentDeploymentInstance

InstanceDeploymentDescription

+name: EString
+value: EString

PropertyValue

0..*
propertyValue

 0..1

source

0..*
subcomponent

0..*
instance

D3S Technical Report no. D3S-TR-2012-07

35

Table 6 Homomorphism between HIC2 AMM and SOFA 2 CMM

HIC2 AMM entity SOFA 2 CMM entity Comments

Interface & InterfaceType:
Interface Interface
InterfaceType InterfaceType
Interface.type[1] Interface.interfaceType[0..1] The difference in cardinality

is due to technical reasons.
Interface.communicationForm attribute
+ Interface.role attribute

Interface.communicationStyle attribute SOFA2 communication style
comprises both
communication form and
role

ComponentType:
ComponentType Frame
ComponentType.interfaces[*] Frame.providedInterface[*] +

Frame.requiredInterface[*]
Distinction of
provided/required interface
in SOFA2 is not related to
composition, instead, it is a
result of a leaking
programming model (i.e., it
expresses, how is the
interface accessed from the
component implementation).

ComponentTemplate:
ComponentTemplate Architecture
ComponentTemplate.refinedType[1..*] Architecture.implements[*] The difference in cardinality

is due to technical reasons.
ComponentTemplate.connectors[*] Architecture.binding[*] SOFA2 does not distinguish

bindings and delegations.
ComponentTemplate.delegations[*] Architecture.binding[*] "
ComponentTemplate.subcomponents[*] Architecture.subcomponent[*]

ComponentInstance:
ComponentInstance SubcomponentInstance
ComponentInstance.teplate[0..1] SubcomponentInstance.instantiatesFrame[0..1]
ComponentInstance.type[0..1] SubcomponentInstance.instantiatesArchitecture[0..1]
Attribute Property + PropertyValue + related associations Attributes are in SOFA2

represented indirectly by
means of properties, values of
which are set at deployment
time. Thus the
homomorphism is more
complex in this case.

Delegation:
Delegation Connection + ComponentInterfaceEndpoint +

SubcomponentInterfaceEndpoint
SOFA2 does not distinguish
bindings and delegations.

Delegation.subcomponentInterface[1] SubcomponentInterfaceEndpoint.interfaceName
attribute

Interface is not referred
directly; it is identified by its
name.

Delegation.subcomponent[1] SubcomponentInterfaceEndpoint.subcomponent[0..1] The difference in cardinality
is due to technical reasons.

Delegation.parentInterface[1] ComponentInterfaceEndpoint.interfaceName attribute Interface is not referred
directly; it is identified by its
name.

Bindings:
Connector Connection SOFA2 does not distinguish

bindings and delegations.
ConnectorEndpoint SubcomponentInterfaceEndpoint
ConnectorEndpoint.interface[1] SubcomponentInterfaceEndpoint.interfaceName Interface is not referred

directly; it is identified by its
name.

ConnectorEndpoint.component[1] SubcomponentInterfaceEndpoint.subcomponent[0..1] The difference in cardinality
is due to technical reasons.

Connector.endpoints[*] Connector.endpoint[*]

