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ABSTRACT
Memory caches significantly improve the performance of
workloads that have temporal and spatial locality by pro-
viding faster access to data. Current processor designs have
multiple cores sharing a cache. To accurately model a work-
load performance and to improve system throughput by in-
telligently scheduling workloads on cores, we need to under-
stand how sharing caches between workloads affects their
data accesses.
Past research has developed analytical models that esti-

mate the cache behavior for combined workloads given the
stack distance profiles describing these workloads. We ex-
tend this research by presenting an analytical model with
contributions to accuracy and composability – our model
makes fewer simplifying assumptions than earlier models,
and its output is in the same format as its input, which is
an important property for hierarchical composition during
software performance modeling.
To compare the accuracy of our analytical model with

earlier models, we attempted to reproduce the reported ac-
curacy of those models. This proved to be difficult. We
provide additional insight into the major factors that influ-
ence analytical model accuracy.

Categories and Subject Descriptors
C.4 [Performance of Systems]: Modeling techniques, Mea-

surement techniques; B.3.2 [Memory Structures]: Design
Styles—Cache memories; B.8.2 [Performance and Reli-
ability]: Performance Analysis and Design Aids

General Terms
Performance, Measurement, Experimentation
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1. MOTIVATION
The motivation for this paper originates with our work

on software performance modeling. In software performance
models, the performance of a software system is typically de-
rived from the performance of the constituting components
and the component interactions [7]. The interactions may
be explicit, such as method invocation or message passing,
or implicit, such as competing for a shared resource. Often,
memory caches are one such resource.

Memory caches significantly improve the performance of
workloads that have temporal and spatial locality by provid-
ing faster access to data. An accurate software performance
model may therefore need to capture the performance im-
pact of multiple workloads competing for memory caches [2].

Analytical models that estimate the cache behavior for a
combination of workloads have been developed. These mod-
els target applications such as processor design or workload
scheduling [8, 9, 13, 10]. For application in software perfor-
mance modeling, additional requirements exist:

• Software performance models typically deal with time.
The cache model therefore needs to calculate the tim-
ing penalties, rather than only the cache miss counts
or the cache miss ratios.

• Software performance models often contain hierarchi-
cally composed components. The cache model should
therefore permit the corresponding evaluation of hier-
archically composed workloads.

Our first contribution is a cache model that reflects these
requirements. The model belongs to the family of analytical
cache models that use stack distance profiles1 to describe
the workload behavior. As a step towards hierarchical com-
position, our model calculates the resulting stack distance
profile of a combination of workloads in addition to the tim-
ing penalties.

An important property of a cache model is its accuracy.
The evaluation of accuracy is hindered by two factors: the
difficulty in obtaining precise model inputs and the diffi-
culty in creating controlled experimental conditions. Exist-
ing research differs in how these difficulties are addressed –

1A stack distance profile tells the probability of accessing a
given number of different cache lines in between consecutive
accesses to the same cache line.
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striving for more precise inputs and more controlled condi-
tions often implies significant overhead and limited realism,
but imprecise inputs and uncontrolled conditions can also
be detrimental.
Our second contribution is an evaluation of the model-

ing accuracy in realistic settings. In particular, we improve
the existing methods for collecting the model inputs on real
hardware, impose no additional control over the execution
phases of the competing workloads, and compare the mod-
eling results with measurements on real hardware.

Because the accuracy of a model depends on multiple
factors, interpreting particular accuracy results is difficult.
This prevents direct comparison of the accuracy results re-
ported in previous research. It also complicates estimating
how much of the reported accuracy is preserved in different
settings.
As our third contribution, we use experiments to isolate

the individual accuracy factors and provide insights into how
the experimental settings impact accuracy. We also develop
a method for collecting the stack distance profiles that me-
diates the influence of the workload profile stability and the
replacement policy approximation on accuracy.2

The paper is structured as follows. We start by introduc-
ing our cache model in Section 2. We explain what tools we
use to collect the model inputs in Section 3. In Section 4,
we present the evaluation results, first in an overall view
and then focusing on the major accuracy factors. In Sec-
tion 5, we outline the relationship of our model to existing
research, both in design and in evaluation. We summarize
our contribution in Section 6.

2. CACHE SHARING MODEL
The cache sharing model for a cache with associativity A

takes as an input for each workload x the stack distance pro-
file sdpx, the mean number of cache accesses per instruction
APIx, the number of instructions per processor clock cycle
when running in isolation IPCx, and the cache miss penalty
in processor clock cycles mpx. The output consists of mod-
ified stack distance profiles, sdp′x, and modified IPC values,
IPC′

x, when each workload is running in parallel with other
workloads. The profiles and IPC values can also be com-
bined to get a single profile and IPC value representing the
combined workload, for use when the models are composed
in hierarchies.
For sake of brevity, we describe the model for two parallel

workloads, denoted 1 and 2. The extension for multiple
parallel workloads is straightforward.

In principle, the modified stack distance profile of work-
load 1, when running in parallel with workload 2, is derived
in three steps done for each stack distance d, 1 ≤ d ≤ A:

1. Calculate the average time (in processor clock cycles)
between two consecutive accesses to the same cache
line, where the second access has a stack distance d.
We call this reuse time of stack distance d and denote
as rd.

2. Estimate the number of distinct cache lines accessed
by the other workload during the time rd.

2See Section 4.5 for workload profile stability and Section 4.6
for replacement policy approximation.

3. Increase the stack distance of accesses for the original
stack distance d by the number estimated in step 2.

We now describe the individual steps in detail.

Step 1. To obtain rd, we observe that during the reuse
time, the workload has to access d − 1 distinct cache lines
to build up the distance of the reused cache line in the LRU
stack, and then access the reused line. With the assumption
of independent accesses, this equals the mean time to achieve
cache set occupation from 0 to d distinct cache lines, and can
be derived from the stack distance profile as follows.

We model the process of cache set occupation of a work-
load as a Markov chain, with d + 1 states representing the
number of occupied cache lines between 0 and d. The tran-
sition matrix Pd is defined:3

• p0,1 = 1

• pi,i = hit(i), 1 ≤ i < d

• pi,i+1 = 1− hit(i), 1 ≤ i < d

• pd,d = 1

• pi,j = 0 otherwise, 0 ≤ i ≤ d, 0 ≤ j ≤ d

In the above, hit(i) is the probability of a cache hit with
i lines occupied, and can be derived directly from the stack
distance profile:

hit(i) =

∑i

j=1
sdp1(j)

∑A+1

j=1
sdp1(j)

(1)

With the state d being absorbing, we can calculate the
expected number of steps td from the initial state 0 to the
absorption in state d [11]:

td =

d−1
∑

j=0

[

(I−T)−1
]

0,j
(2)

where I is a d-by-d identity matrix, T = [pi,j ], i, j ∈ {0, . . . ,
d− 1}.

The mean number of accesses between reuses of cache lines
with stack distance d is equal to td and the reuse time (in
processor cycles) can be derived:

rd =
td

API1 · IPC1

(3)

Step 2. To determine the interference from the second
workload, we first calculate the average number of accesses
by the second workload during the reuse time of the first
workload:

ad = rd ·API2 · IPC2 (4)

To calculate how many distinct lines exist in ad consec-
utive accesses by the second workload, we use the transi-
tion matrix of the second workload with the number of oc-
cupied cache lines ranging from 0 to the cache associativ-
ity A, denoted as QA. We derive the probability vectors

3The indices start from zero to match the states directly.



D(n) = {D0(n), . . . , DA(n)}, where Dm(n) is the probabil-
ity of the second workload accessing m distinct cache lines
after n accesses, where 0 ≤ m ≤ A, as follows [11]:

D(n) = uQn
A, (5)

where u = {u0, . . . , uA}, u0 = 1 and um = 0,m > 0.
The vector D(ad) thus gives the probability distribution

of the number of distinct cache lines accessed by the second
workload. For non-integer values of ad, the vector is defined
as an element-wise linear interpolation between the vectors
D(⌊ad⌋) and D(⌈ad⌉).

Step 3. A partial distance profile pdp′1d, describing the
modified stack distances under sharing for accesses with
original stack distance d, is calculated by taking the value
sdp1(d) from the original profile and distributing it between
distances d to d + A proportionally to the values in D(ad).
Since accesses with resulting distance larger than A+ 1 are
always misses, we treat them as having the distance of A+1:

pdp′1d(d+ i) = sdp1(d) ·Di(ad), 0 ≤ i < A+ 1− d

pdp′1d(A+ 1) = sdp1(d) ·
A
∑

i=A+1−d

Di(ad)
(6)

After repeating the three steps for each d, 1 ≤ d ≤ A,
the resulting distance profile sdp′1 can be constructed by
adding up the partial distance profiles pdp′1d created in each
repetition:

sdp′1(i) =

A
∑

d=1

pdp′1d(i), 1 ≤ i ≤ A+ 1 (7)

Cache misses in the original profile, sdp1(A+1), are simply
added to sdp′1(A+ 1).

To determine IPC′

1, we consider how the ratio of misses
per cache access increases due to the decrease of cache hit
probability hit(A) to hit′(A), which is calculated from sdp′1
using Eq. 1:

∆MPA1 = hit(A)− hit′(A) (8)

These extra cache misses can be translated to extra CPI
using the workload cache miss penalty mp1:

∆CPI1 = ∆MPA1 ·API1 ·mp1 (9)

The resulting IPC′

1 of the first workload thus follows:

IPC′

1 = ((1/IPC1) + ∆CPI1)
−1 (10)

To determine sdp′2 and IPC′

2, we repeat the whole pro-
cess with the roles of the first and the second workload ex-
changed.

In equations 3 and 4, we have used the IPC values from
isolated execution, although the workloads are in fact mutu-
ally influencing their IPC by executing in parallel over the
shared cache. We solve this issue iteratively – in each iter-
ation, new sdp′x and IPC′

x values are calculated using the
IPC′

x values from the previous iteration, starting with the
isolated IPCx inputs. Note that the stack distance profiles

of the individual workloads are not modified during the it-
erations – in all steps, the isolated sdpx profiles are used as
inputs. We use a simple ǫ stability criterion on the IPC′

x

values to determine solution convergence.

Finally, for composition purposes, the composed stack
distance profile is calculated by element-wise averaging the
sdp′x profiles weighted by the memory access frequencies de-
rived from IPC′

x and APIx.

3. EVALUATION TOOL SUPPORT
We evaluate the accuracy of the cache model by carrying

out multiple experiments where various workload combina-
tions are executed in parallel on cores that share a cache.
The performance of the workload is both modeled and mea-
sured and the values are compared. Here, we describe the
experimental workloads and the two techniques we use for
collecting the stack distance profiles. Because any profil-
ing technique can influence the collected profile, we use two
different techniques to understand this influence on the ac-
curacy of the model.

3.1 Experimental Workloads
Our workload combinations are pairs of workloads adopted

from the SPEC CPU 2006 benchmark suite [1], supplemen-
ted with FFT and LZW calculations. The workloads ex-
ecute in our experimental framework [3], which separates
the initialization and the calculation parts of each work-
load and runs the calculation parts repeatedly to achieve
steady cache sharing conditions. Even though the work-
loads can have multiple phases with different behavior, we
avoid explicit synchronization that would make only partic-
ular phases compete against each other.

Depending on various technical properties of the code,
getting a benchmark to work in our experimental frame-
work may require a significant effort. To reduce this effort,
we only use a subset of the SPEC CPU 2006 benchmark
suite, but ensure that the included workloads have sufficient
variation in their stack distance profiles. The subset consists
of the 401.bzip2, 429.mcf, 444.namd, 458.sjeng, 462.libquan-
tum, 470.lbm, and 473.astar benchmarks, with modifications
adjusting the range of the accepted inputs as follows:

• 401.bzip2 was extended with a parameter for config-
uring the amount of data compressed, in addition to
the file containing the data. Eight configurations are
used, with the with amount of data set to either 1MB
or 2MB and the input file set to one of dryer.jpg,
input.program, text.html from 401.bzip2 inputs, and
100 100 130 cf a.of from 470.lbm inputs.

• 429.mcf uses a randomized subset of the inp.in input.

• 444.namd uses the namd.input input.

• 458.sjeng uses a subset of the test.txt input.

• 462.libquantum was modified to accept the input as
arguments rather than reading it from a file. We use
two input combinations, (143, 25) and (39, 25).

• 470.lbm was extended with a parameter for configuring
the number of iterations performed per invocation. We
use the 100 100 130 cf a.of input and one iteration
per invocation.



• 473.astar uses the lake.bin with lake.cfg input.

Together with the FFT and LZW calculations, we have
139 workload combinations.

3.2 Stack Distance Collection:
Valgrind Extension

The first technique we use for stack distance profile col-
lection extends the cache profiler Cachegrind, which is a
part of the Valgrind instrumentation and dynamic analy-
sis tool [12]. When executing an application, Cachegrind
observes the memory accesses and dynamically simulates a
two-level cache hierarchy that is configured to match the
host platform. The number of cache accesses and cache
misses can be either reported for the whole program, or re-
ported in more detail for program function and source line.
To simulate the cache hierarchy, Cachegrind maintains a

LRU stack of cache line addresses for each cache set. Our
extension added counters for all stack distances to produce
the stack distance profiles.
To minimize the framework overhead, we use Valgrind

Client Control trapdoor mechanism, which can instruct the
simulator to start and stop counting, save the results, and
reset the counters. We use this mechanism to let the simula-
tor populate the LRU stacks during the warmup cycles, and
only count the access distances during the measurement cy-
cles. After measurement, the counters for each set are added
together to form a single average profile – modeling with a
separate profile for each set is also possible, but not investi-
gated here.
Valgrind ignores hardware prefetching, because it only in-

tercepts memory accesses at software level.

3.3 Stack Distance Collection:
Stressmark Workload

The second technique we use for stack distance profile
collection uses the Stressmark workload, described in [13].
Stressmark is designed to heavily use a configurable subset
of the cache. This reduces the effective cache size for any
other workload that runs with Stressmark. Observing the
hardware performance event counters for multiple effective
cache sizes allows us to derive the stack distance profiles and
the miss penalties for the other workload.
During execution, Stressmark strives to occupy a particu-

lar number of ways in all cache sets by accessing the cache in
a random sequence, going through all sets once for each way
to be occupied. This access pattern results in a flat stack
distance profile. By observing the shared cache access and
miss counters, we calculate the average number of truly oc-
cupied ways across all sets as the accessed number of ways
times the observed hit rate. By repeating the Stressmark
execution for different number of occupied ways, we can ob-
serve the miss rate of the profiled workload under different
effective cache sizes, which allows us to compute the stack
distance profile.
Because the Stressmark workload competes with the pro-

filed workload in all sets, it may not be able to achieve a high
number of truly occupied ways against more intensive work-
loads. This means observations corresponding to small stack
distances may be missing. For those distances, we distribute
the remaining accesses equally. For observed distances that
are not integers, we use linear interpolation.
We make two modifications to Stressmark to improve ac-

curacy. To estimate the cache miss penalty, we use only

misses due to sharing, rather than all missess. Specifically,
we measure how much the processor clock cycle counter and
the shared cache miss counter increase under sharing. The
penalty is calculated as the cycle count increase over the miss
count increase, with the least-square-error linear regression
applied to calculate a single penalty value for each work-
load. We also use the page coloring-based memory allocator
from [5] to ensure that in our Stressmark implementation,
all cache sets are accessed and no conflict misses occur.

The Stressmark-based tool interacts with hardware pre-
fetching. In particular, the hardware performance event
counters used to determine Stressmark cache occupancy do
not distinguish between cache misses due to prefetch hits
and prefetch misses. Therefore, either both kinds of cache
misses are counted or none are. Stressmark can also sup-
press prefetches that would otherwise happen [4, 2].

3.4 Stack Distance Collection:
Discussion

Despite the instrumentation overhead, collecting profiles
with Valgrind is actually faster than using Stressmark, which
has to repeat the measurement for each stack distance from
zero to the cache associativity. However, Valgrind is not a
cycle-accurate simulator. Therefore, we collect the instruc-
tion throughput and miss penalty values using Stressmark
even when we obtain the stack distance profiles with Val-
grind.

4. EVALUATION RESULTS
To evaluate the modeling accuracy, we independently mo-

del and measure cache sharing on selected workload com-
binations, and compare the model predictions to the mea-
surements. Our measurements are obtained on a Dell Pow-
erEdge 1955 system with two Quad-Core Intel Xeon proces-
sors (Type E5345, Family 6, Model 15, Stepping 11, Clock
2.33 GHz), 8 GB DDR2-667 memory, Intel 5000P memory
controller, Fedora Linux 8, gcc-4.1.2-33.x86 64, glibc-2.7-
2.x86 64. The workloads run on cores that have a private
32 KB 8-way set associative instruction L1 cache, a private
32 KB 8-way set associative L1 data cache, and share a 4 MB
16-way set associative L2 unified cache.

In our experiments, we disable hardware prefetching, be-
cause neither of our stack distance profile collection tech-
niques is hardware prefetch aware. If needed, the perfor-
mance impact of hardware prefetching can be evaluated sep-
arately from the performance impact of cache sharing [4, 2].

In the following, MR stands for miss rate, IPC stands
for instruction throughput, isol stands for values measured
when running an isolated workload, real stands for values
measured when running a workload combination, and pred
stands for values predicted by the model.

4.1 Overview: IPC
As an overview, we plot the relative slowdown prediction,

(IPCisol−IPCpred)/IPCisol, against the relative slowdown
measurement, (IPCisol−IPCreal)/IPCisol, for all workload
combinations. A workload combination is displayed as two
points, one for each workload. A dotted line indicates when
the predicted slowdown equals the measured slowdown. Fig-
ure 1 plots the predictions based on the Valgrind profiles,
Figure 2 plots the predictions based on the Stressmark pro-
files.
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Figure 1: IPC slowdown prediction against IPC
slowdown measurement, Valgrind profiles.
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Figure 2: IPC slowdown prediction against IPC
slowdown measurement, Stressmark profiles.

The workloads most sensitive to parallel execution are
some variants of fft and bzip2. With the Valgrind profiles,
their slowdown is predicted with relatively acceptable error,
however, for most of the other sensitive workloads, the slow-
down prediction is too optimistic. Overall, the Valgrind pro-
files have a median prediction error of 3.5%, inter-quartile
range 1% - 8.5%, where the prediction error is calculated
as |IPCpred − IPCreal|/IPCreal. When considering only
the upper quartile of workload combinations by sensitivity
to paralel execution, we have 70 workloads whose slowdown
exceds 19%. For this group, the median prediction error is
14%, inter-quartile range 7% - 27%.
With the Stressmark profiles and the workloads most sen-

sitive to parallel execution, the slowdown prediction is some-
what pessimistic. Overall, the Stresmark profiles have a
median prediction error of 9.6%, inter-quartile range 4.7% -
30%. For the same group of sensitive workloads as above,
the median prediction error is 10%, inter-quartile range
6% - 27%. Importantly, the prediction is very pessimistic
even for the least sensitive workloads.
The figures indicate that there are also workloads that ap-

pear to speed up in parallel execution. Although not intu-
itive, this is indeed possible, especially where a mostly writ-
ing workload executes in combination with a mostly reading
workload. In this situation, the reading workload may take
over part of the penalty for evicting dirty cache lines from
the writing workload [2].

Compared to existing research, which rarely reports er-
rors larger than units of percent, the results on Figures 1
and 2 might appear to be inaccurate. In the related work
section, we explain why this is a misleading impression. To
justify our claim, we have used the same inputs to perform
validation with our implementation of the model in [13], and
– although we can never safely exclude potential implemen-
tation issues – we have obtained similar modeling accuracy.
The details are not included in the text due to lack of space,
however, we publish both the sources and the data for in-
terested readers.

4.2 Overview: Miss Rate
We continue with plotting the miss rate prediction er-

ror, MRpred −MRreal, against the miss rate increase of the
workload in concurrent execution, MRreal − MRisol. The
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Figure 3: MR prediction error depending on the
MR prediction error of the other workload in com-
bination, Valgrind profiles.

predictions based on the Valgrind profiles are in Figure 4,
the predictions based on the Stressmark profiles are in Fig-
ure 5.

With the Valgrind profiles, the model appears to predict
the miss rate with a resolution of about 0.05. The roughly
linear cluster of points to the lower left suggests that in-
creases in the miss rate below this resolution are not pre-
dicted by the model. We attribute these effects to the de-
tailed behavior of the cache replacement policy.

With the Stressmark profiles, the model appears more pes-
simistic for less sensitive workloads. This effect is exempli-
fied with lzw, whose Stressmark profile indicates almost 40%
of accesses with stack distance just below the cache associa-
tivity (see Figure 8). Since these accesses would be very
likely to change from hits to misses under concurrent execu-
tion, an inaccuracy in this part of the profile would explain
the observed effect.

To assess whether both workloads in a workload combi-
nation suffer from the same miss rate prediction error, or
whether the model favors one workload against the other,
we plot the miss rate prediction error of one workload in
a combination against the miss rate prediction error of the
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Figure 4: MR prediction error depending on MR
increase, Valgrind profiles.
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Figure 5: MR prediction error depending on MR
increase, Stressmark profiles.
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Figure 6: MR prediction error depending on MR in-
crease, Valgrind profiles (grey points). Black points
denote prediction with injected IPCreal.

other workload. The results for Valgrind profiles on Fig-
ure 3 suggest that the error tends to impact both workloads
equally, even though there are exceptions. Although not
shown separately, the impact on the slowdown prediction is
similar.

4.3 Miss Penalty Approximation
The cache model includes interaction between misses and

penalties. Next, we investigate measurements that help iso-
late the effects of poor miss penalty approximation on the
miss rate prediction. We do that by injecting IPCreal into
the calculation where IPCpred would otherwise be calcu-
lated.
There are two ways the injection can be performed. Either

the iteration in the model is preserved and the measured in-
struction throughput is used as a seed, or the iteration is
removed entirely. For the former option, there is no ob-
servable change in results, which confirms the iteration is
not hindered by encountering local extremes. For the latter
option, the results with Valgrind profiles are on Figure 6,
with black points adjusted and grey points original. The
difference is in fact relatively small.
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Figure 7: IPC slowdown prediction against IPC
slowdown measurement, injected MRreal.

4.4 Miss Rate Prediction
Analogously to the previous experiment, we investigate

measurements that help isolate the effects of poor miss rate
prediction. We do that by injecting MRreal into the calcu-
lation where MRpred would otherwise be calculated, again
removing the iteration entirely. The results on Figure 7
clearly indicate that an improved miss rate prediction would
improve the modeling accuracy.

4.5 Workload Profile Stability
The previous experiments indicate the modeling accuracy

is related more to the miss rate prediction than to the miss
penalty approximation. The Valgrind profiles and the Stress-
mark profiles yield potentially different prediction results,
and profile inaccuracies could explain some observed predic-
tion errors. We therefore investigate the profiles themselves
and the role of the assumption that the profiles are stable
over time and similar across cache sets.

Our use of two workload profile collecting tools makes it
possible to compare the profiles, Valgrind with Stressmark.
While each tool has its drawbacks, and neither profile is
therefore guaranteed to be correct, significant differences



should reveal potential profile accuracy issues. The com-
parison of the profiles is on Figure 8.
The comparison of the profiles indeed reveals significant

differences between Valgrind and Stressmark. The tools
inherently differ in their sensitivity to the assumptions of
stability over time and similarity across sets – where Val-
grind continuously tracks accesses to all sets, Stressmark
must compete one set at a time. To investigate this differ-
ence, we have developed a synthetic workload that is able to
mimic another workload given its stack distance histogram
and mean number of cache accesses per instruction, while
enforcing both stability over time and similarity across sets.
For brevity, we refer to this synthetic workload as Emulator.

The goal of Emulator is to perform independent memory
accesses in each cache set that satisfy a given stack dis-
tance profile. The difficult part is avoiding access to data
controlling Emulator, since that would distort the memory
access pattern. Even a pseudocode description of Emulator
is rather involved, we therefore only present the basic ideas
and invite interested readers to peruse the sources.
In its most basic form, Emulator would need to keep track

of the LRU stack for each set, and, for each access, randomly
pick a distance from the profile, find the corresponding ad-
dress in the LRU stack, perform the access and update the
LRU stack. To avoid accessing the LRU stack, Emulator
prepares the sequence of addresses to access beforehand. To
further reduce overhead, the sequence of addresses to access
is stored as a chain of pointers at the very addresses to be
accessed [5]. Except for locating the first item of the chain,
it can thus be traversed without overhead.
Finally, Emulator does not treat each cache set indepen-

dently. Instead, the sets are assigned and ordered randomly
in 16 groups of equal size. Each group has its own chain
of pointers that defines the sequence of addresses to ac-
cess, touching each set of the group once in random order.
When executing, Emulator maintains 16 pointers, one for
each group, to traverse all sets.
This design reduces the size of data controlling Emula-

tor that has to be read during each iteration to 16 pointers,
which on our platform translates into an overhead of ac-
cessing 2 extra cache lines per 4096 useful accesses. While
this comes at the cost of introducing regularity of accesses
among the sets, the independence of accesses within each set
is preserved. The relative sizes of the access pattern and the
caches also ensure that all accesses spill from the private L1
cache to the shared L2 cache, as is required.

We submit the Valgrind profiles of the original workloads
to Emulator to create synthetic workloads with the same
stack distance profile that are stable over time and homo-
geneous across sets. We then collect the Stressmark profiles
of the synthetic workloads and use these profiles to model
the original workloads. The results are indeed more accu-
rate – across all workloads, the median prediction error is
5.7%, inter-quartile range 2.4% - 13%, across the group
of sensitive workloads, the median prediction error is 8%,
inter-quartile range 4.5% - 15%. The details are on Fig-
ure 9.
Interestingly, the process is not just a more complicated

way of updating the Stressmark profiles to match the Val-
grind ones – in fact, the Stressmark profiles of the synthetic
workloads are not entirely similar to the Valgrind profiles of
the original workloads. This is shown on Figure 11. We ex-

plain the reason for this difference and the related modeling
accuracy next.

4.6 Cache Replacement Policy
So far, we have put aside the issue of the cache replace-

ment policy. Although the details of the policy are not avail-
able in vendor documentation, the hardware most likely im-
plements pseudo LRU in both the private L1 cache and the
shared L2 cache. This actually impacts the workload profile
collecting tools:

• When Valgrind collects a profile, it has to calculate
when accesses spill from L1 to L2. Any deviation
from strict LRU in L1 therefore impacts the profile,
while deviations in L2 do not. In precise terms, when
Valgrind collects a profile, it means that the measured

workload would have this profile in L2 on a platform

where L1 uses strict LRU.

• When Stressmark collects a profile, it has to calculate
which position in the stack distance histogram corre-
sponds to L2 misses observed at particular L2 occu-
pancy. Any deviation from strict LRU in L2 therefore
impacts the profile, while deviations in L1 do not. In
precise terms, when Stressmark collects a profile, it
means that a workload with this profile executing on

a platform where L2 uses strict LRU would cause the

same number of L2 misses as the measured workload

does on a platform where both L1 and L2 use pseudo

LRU.

Our cache model calculates the miss rates under the as-
sumption of strict LRU. The validation compares these with
miss rates measured on a platform with pseudo LRU. The
mismatch between strict LRU and pseudo LRU exhibits it-
self differently with the two workload profile collecting tools:

• The Valgrind profile describes how the profiled work-
load would access L2 if L1 used strict LRU. Then, the
model calculates what the miss rate would be if mul-
tiple profiled workloads shared an L2 with strict LRU.
When using the Valgrind profiles, the model therefore
calculates a miss rate on a hypothetical platform with
strict LRU.

• The Stressmark profile describes how a hypothetical
workload would have to access L2 on a platform with
strict LRU to achieve the same miss rates against
Stressmark as the profiled workload does on the plat-
form with pseudo LRU. Then, the model calculates
what the miss rate would be if multiple hypothetical
workloads shared an L2 with strict LRU. When us-
ing the Stressmark profiles, the model therefore calcu-
lates a miss rate for the hypothetical workloads, which
should achieve a similar miss rate on a platform with
strict LRU as the profiled workloads do on the plat-
form with pseudo LRU.

This explains the results from Section 4.5, where using
the Stressmark profiles of the Emulator workloads, which in
turn simulate the Valgrind profiles of the original workloads,
yields better accuracy than using either the Stressmark pro-
files or the Valgrind profiles of the original workloads di-
rectly. When collecting the profiles of the original work-
loads, Valgrind copes better than Stressmark with workloads
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Figure 8: Stressmark profiles (black) and Valgrind profiles (white) of the original workloads. Distances grow
from left to right. Multiple profiles of the same name denote the same benchmark with different choices of
inputs.

whose profiles change over time and differ across sets. Sim-
ulating the original workloads with Emulator ensures sta-
bility over time and homogeneity across sets, important for
the subsequent use of Stressmark. Finally, Stressmark calcu-
lates what profiles would cause the observed cache misses in
a cache with strict LRU. These profiles fit the cache model,
which estimates the cache misses under the assumption of
strict LRU, better than the Valgrind profiles.

Finally, we illustrate the modeling accuracy in a situa-
tion where both the workload profile stability issues and the
cache replacement policy issues are minimized. Modifying
the previous experiment, we submit the Valgrind profiles of
the original workloads to Emulator to create synthetic work-
loads, we then collect the Stressmark profiles of the synthetic
workloads, and we use these profiles to model the synthetic
workloads. The results, plotting the relative slowdown pre-
diction, (IPCisol − IPCpred)/IPCisol, against the relative
slowdown measurement, (IPCisol − IPCreal)/IPCisol, are
on Figure 10. Across all workloads, the median prediction
error is 3.2%, inter-quartile range 0.9% - 6.1%, across the
group of sensitive workloads, the median prediction error is
3.8%, inter-quartile range 1.6% - 5.9%. Since the results
are for the synthetic workloads, they are no longer useful

for modeling the original workloads, but they illustrate the
accuracy achievable for workloads with stable profiles.

To conclude, our evaluation has shown the modeling ac-
curacy achievable when the various simplifying assumptions
about the workloads and the platform are satisfied only to a
degree common in realistic settings. Furthermore, we have
shown how enforcing the validity of the individual assump-
tions contributes to the modeling accuracy. The results indi-
cate that the modeling accuracy is sufficient for application
in software performance modeling, especially for workloads
sensitive to cache sharing.

5. RELATED WORK
Of the models that estimate the cache miss ratio based

on the workload description, we focus on models that rely
on access distance profiles for workload description and are
capable of handling combinations of workloads. More com-
plex modeling approaches, such as full system simulation,
belong to different application domain due to potentially
large overhead. Less complex modeling approaches, such as
overhead interpolation, were investigated in [6]. For each
related model, we consider the internal structure and the
evaluation approach separately.
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Figure 9: IPC slowdown prediction against IPC
slowdown measurement of the original workloads

with profiles collected by Stressmark on synthetic

workloads.
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Figure 10: IPC slowdown prediction against IPC
slowdown measurement of the synthetic workloads

with profiles collected by Stressmark (also on syn-
thetic workloads).

In our review, we sometimes have to adjust the discrep-
ancies in terminology. Notably, when talking about the dis-
tance between consecutive accesses to the same cache line,
we use the term reuse distance profile when the distance is
expressed in memory accesses, and the term stack distance

profile when the distance is expressed in unique cache lines.

5.1 Related Model Structure
The statistical model by Chandra et al. [8] is the oldest of

the related models listed here. The computational approach
follows the general outline of first estimating the time be-
tween two consecutive accesses to the same cache line by
one workload, then calculating the distribution of accesses
to unique cache lines in that time interval by the other work-
load, and finally determining what percentage of former hits
will be turned to misses by those additional accesses.

The most notable difference between their model and ours
is in the required inputs. Their model requires not only the
stack distance profile, but also a distribution of the inter-
mediate access counts for each distance in the stack dis-
tance profile, together denoted as circular sequence profile.
In some points of the calculation, parts of the circular se-
quence profile are averaged over, the contribution of this ad-
ditional information to accuracy is therefore not clear. The
required inputs are also different from the provided outputs,
preventing hierarchical model composition.
As another notable difference, their model does not con-

sider the mutual influence between the competing work-
loads. This is related to the fact that their model only
deals with the cache misses and not the timing penalties,
and is thus unable to determine how much the additional
cache misses due to sharing change the relative speed of the
workloads.
Both our model and the model in [8] assume limited asso-

ciativity. This assumption is important for their model since
it uses a recursive formula to calculate the number of ac-
cesses to unique cache lines in a given time interval. Because
the complexity of the formula grows exponentially with the
interval length, the calculation over the entire cache, rather
than over a single cache set, is not feasible in their model.

The throughput model by Chen et al. [9] includes a proba-
bilistic cache contention model that extends the model in [8]
in two major ways:

• The model compensates for situations where, due to
a relatively large number of sets, the competing work-
loads are not likely to access the same sets in short
time intervals. To do that, the model replaces the re-
cursive formula that calculates the number of accesses
to unique cache lines in a given time interval with a
calculation based on additional input information.

• The model estimates how much the additional cache
misses due to sharing change the relative speed of the
workloads. Unlike our model, which iterates until con-
vergence, the model in [9] only uses two repetitions.

In addition to the inputs required by the model in [8], the
model in [9] also requires the average number of accessed
sets and the stack distance profile for accesses in a given time
interval, both for multiple groups of time intervals. Again,
the required inputs are different from the provided outputs,
preventing hierarchical model composition.

Both our model and the model in [9] assume limited as-
sociativity. Using the additional input information, their
model better describes the situations where the workloads
are not likely to compete for the same sets, however, their
model still expects that the stack distance profiles are the
same for all sets. Given that the choice of the cache sets
is typically not controlled by the workload, this expectation
appears reasonable.

The model by Xu et al. [13] employs a computational ap-
proach based on the properties of a steady state, where the
competing workloads occupy their fixed shares of the cache.
First, the relationship between the length of a time interval
and the number of unique cache lines accessed in the interval
is expressed using a recursive formula similar to that in [8].
Next, it is observed that all the competing workloads take
the same time to entirely occupy their cache shares, and that
the sum of the cache shares is the cache size. This gives a
set of equations that can be solved to yield the sizes of the
cache shares.
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Figure 11: Stressmark profiles of the synthetic workloads (black) and Valgrind profiles of the original work-
loads (white). Distances grow from left to right.

Both our model and the model in [13] assume limited as-
sociativity, expecting that the stack distance profiles are the
same for all sets. Their model also requires the same inputs
as our model. Again, the required inputs are different from
the provided outputs, preventing hierarchical model compo-
sition.

The model by Eklov et al. [10] relies on a statistical ap-
proach that estimates a stack distance profile from a reuse
distance profile. First, scaled versions of the reuse distance
profiles of the competing workloads are expressed as func-
tions of the instruction throughputs. The scaled profiles are
then merged into a single reuse distance profile. Next, a
merged stack distance profile is estimated from the merged
reuse distance profile. The merged stack distance profile
is then split into the stack distance profiles of the compet-
ing workloads. Finally, the instruction throughputs of the
competing workloads are expressed as functions of the stack
distance profiles. This gives a set of equations that can be
solved to yield the instruction throughputs.
Unlike our model, the model in [10] assumes full associa-

tivity. The impact of this difference on accuracy depends on
the workloads, and is generally difficult to quantify.
The model in [10] requires similar inputs as our model,

namely the reuse distance profiles where we require the stack
distance profiles. Although technically different, the inputs

are of similar nature and scale. Internally, their model per-
forms profile conversions, merges and splits that involve ap-
proximations and possibly rounding,4 which may impact ac-
curacy. Although direct comparison is not possible due to
technical differences, we believe that similar impact on our
model is smaller, since it uses no rounding and fewer as-
sumptions.

Finally, the required inputs are different from the pro-
vided outputs, but since the merged reuse distance profile is
considered as an interim information in the model, it is pos-
sible that relatively minor modification would remove this
obstacle to hierarchical model composition.

To summarize, we show how our model and the reviewed
models differ in features such as the inputs and the outputs,
the computational approach, the treatment of associativity,
and the rounding and assumptions that impact accuracy. All
of the models differ in some of the features, both compared
with our model and compared among themselves.

5.2 Related Model Evaluation
Existing research also differs in how the modeling accu-

racy is evaluated, so much so that this basically makes the

4The issue of rounding is not discussed explicitly but the
illustrations suggest it is likely done.



accuracy results incomparable. We explain some of the rea-
sons by looking at how the model inputs are obtained and
how the experimental conditions are controlled.

As far as the model inputs are concerned, the evaluations
in [8, 9, 10] rely on simulators to obtain the workload pro-
files.5 The use of simulators typically gives precise workload
profiles, however, simulators often introduce overhead that is
not acceptable in realistic settings, where the models would
therefore work with potentially less precise inputs.
The evaluation in [13] determines the workload profiles

that form the model inputs using experimental measure-
ments on real hardware. The experimental measurements
still carry some overhead, and the workload profiles are con-
structed from the measurements with some approximations.
Our evaluation is closer to [13] than the other reviewed

evaluations since it also obtains model inputs using experi-
mental measurements on real hardware.

Once the required inputs are available, the evaluation pro-
ceeds by independently modeling and measuring the effects
of cache sharing on selected workload combinations. The
results of modeling and measurement are compared to de-
termine the modeling accuracy.
The workload combinations are almost always limited to

pairs of workloads, except for [9], which uses up to 32 work-
loads of up to 4 different types. The workloads are almost
always selected from the SPEC CPU benchmark suite, but
the benchmark version and the configured input size varies.
Typically, about tens of different workload combinations are
used. Our evaluation roughly fits these general parameters
– the somewhat limited choice from the SPEC CPU bench-
mark suite is compensated with a larger choice of the config-
ured input sizes and the addition of other benchmarks, the
total number of workload combinations we use is higher.

For a particular workload combination, how the combi-
nation is executed also matters. The workloads are known
to have multiple phases with different behavior, and details
such as synchronization and repetition can influence what
phases end up competing for the cache:

• The experiments in [8] run the workloads once and stop
the measurement when the shorter workload finishes.

• The experiments in [9] run a block of 400 million in-
structions at the start of the workloads.

• The experiments in [13] are described too vaguely to
determine how the workloads were executed. The text
suggests that only a single phase was considered for
each benchmark, however, it does not say how the
phases were identified and synchronized.

• The experiments in [10] run a block of 100 million ac-
cesses a constant distance from the start of the work-
loads.

Our experiments separate the initialization and the calcu-
lation parts of the workloads and run the calculation parts
(which can contain multiple phases) repeatedly without syn-
chronization. Compared to the reviewed evaluations, this in-
creases the opportunity for different combinations of phases

5The evaluation in [10] also explores the option of profile
sampling.

to compete for the cache, and reduces the risk of observing
artefacts due to strict workload synchronization.

The evaluations in [8, 9, 10] measure the effects of cache
sharing on a simulator. Only the evaluation in [9] comple-
ments these with measurements on comparable real hard-
ware, the other two evaluations use simulator configurations
that potentially limit realism – in [8], the simulator uses spe-
cial set indexing to ensure uniform set utilization, in [10], the
simulator uses in-order processing that can stabilize the miss
penalty. Also, it is not clear whether the simulators imple-
ment the detailed behavior of the cache replacement policy,
which can impact the modeling accuracy significantly.

Of the reviewed evaluations, only the one in [13] uses real
hardware, as does our evaluation.

Finally, the reviewed evaluations differ in the way the
modeling accuracy is reported. Using MR for miss rate
and IPC for instruction throughput, and denoting isolated,
modeled and measured values respectively with isol, pred
and real, we have:

• In [8], the error is defined as the miss rate prediction
error scaled against the measured miss rate,

error =
MRpred −MRreal

MRreal

• In [9], both the miss rate prediction error and the in-
struction throughput prediction error are reported, but
neither is defined. There are hints suggesting the cal-
culation is similar to the previous case.

• In [13], both the miss rate prediction error and the
instruction throughput prediction error are reported,
but neither is defined and there are no hints suggesting
what the calculation looks like.

• In [10], the instruction throughput prediction error
scaled against the isolated instruction throughput is
reported,

error =
IPCpred − IPCreal

IPCisol

The problem with reporting the relative miss rate predic-
tion error, also discussed in [10], is that in low miss rate
workloads, a large relative error may translate into a small
performance impact. When the ultimate purpose of model-
ing is assessing performance, the relative miss rate prediction
error is therefore not a good metric. We believe that multi-
ple error metrics should be used together to help highlight
different accuracy aspects, as we do in our evaluation.

To summarize, we show that the accuracy results of the
reviewed evaluations are mutually incomparable. Addition-
ally, no reviewed evaluation is documented sufficiently for
constructing a comparable evaluation of our model. Lack-
ing the option to produce comparable evaluation results, we
have decided to strive for realistic evaluation settings, which
give practically relevant picture of the achievable accuracy.
We also take care to publish complete documentation – not
just this text, but also complete tool sources and complete
data files – to permit comparable evaluations against our
model.



6. CONCLUSION
The paper makes multiple contributions to memory cache

models, motivated by the aplication in software performance
modeling, but also useful in other contexts. First, we have
presented a new cache model from the family of models that
take the stack distance profile of multiple workloads as in-
put and estimate the cache miss ratio and the instruction
throughput as output. Among the properties particular to
our model is the ability to calculate the stack distance pro-
file of a combination of workloads. Other properties of our
model were contrasted with related work as well.
We pay a special attention to evaluating the modeling ac-

curacy in realistic settings, in particular when the competing
workloads execute on real hardware with no synchronization
between execution phases. We demonstrate the achievable
accuracy with a series of measurements that not only give
the overall results, but also analyze the various accuracy
factors. We show that in our model, the miss penalty pre-
diction is somewhat less influential than the miss rate pre-
diction. Among the important factors distorting the miss
rate prediction are the workload profile stability and the
differences between the assumed strict LRU policy and the
implemented pseudo LRU policy.
To isolate the individual accuracy factors, we have devel-

oped a specialized workload that is capable of mimicking a
given stack distance profile. We use the workload to demon-
strate a subtle relationship between the tools used to collect
the stack distance profiles and the modeling accuracy – to
our knowledge, this relationship has not been identified in
existing research.
Finally, we identify multiple issues that make the mod-

eling accuracy evaluation results in existing research mu-
tually incomparable. In our evaluation, we carefully avoid
the identified issues and publish complete tool sources and
complete data files to permit comparable evaluations against
our model. The sources and the data files are available at
http://d3s.mff.cuni.cz/benchmark.
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